2:1 for naturalness at the LHC?


A large enhancement of a factor of 1.5 - 2 in Higgs production and decay in the diphoton channel, with little deviation in the ZZ channel, can only plausibly arise from a loop of new charged particles with large couplings to the Higgs. We show that, allowing only new fermions with marginal interactions at the weak scale, the required Yukawa couplings for a factor of 2 enhancement are so large that the Higgs quartic coupling is pushed to large negative values in the UV, triggering an unacceptable vacuum instability far beneath the 10 TeV scale. An enhancement by a factor of 1.5 can be accommodated if the charged particles are lighter than 150 GeV, within reach of discovery in almost all cases in the 8 TeV run at the LHC, and in even the most difficult cases at 14 TeV. Thus if the diphoton enhancement survives further scrutiny, and no charged particles beneath 150 GeV are found, there must be new bosons far beneath the 10 TeV scale. This would unambiguously rule out a large class of fine-tuned theories for physics beyond the Standard Model, including split SUSY and many of its variants, and provide strong circumstantial evidence for a natural theory of electroweak symmetry breaking at the TeV scale. Alternately, theories with only a single fine-tuned Higgs and new fermions at the weak scale, with no additional scalars or gauge bosons up to a cutoff much larger than the 10 TeV scale, unambiguously predict that the hints for a large diphoton enhancement in the current data will disappear.


  1. [1]

    ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson with the ATLAS detector at the LHC, ATLAS-CONF-2012-093 (2012).

  2. [2]

    CMS collaboration, Observation of a new boson with a mass near 125 GeV, CMS-PAS-HIG-12-020 (2012).

  3. [3]

    I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: Higgs couplings, JHEP 01 (2013) 057 [arXiv:1206.5303] [INSPIRE].

    Article  Google Scholar 

  6. [6]

    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light Stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    N. Arkani-Hamed, S. Dimopoulos, G. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  12. [12]

    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    N. Arkani-Hamed, A. Delgado and G. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    D. Choudhury, T.M. Tait and C. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    D. Morrissey and C. Wagner, Beautiful mirrors, unification of couplings and collider phenomenology, Phys. Rev. D 69 (2004) 053001 [hep-ph/0308001] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    S. Dawson and E. Furlan, A Higgs conundrum with vector fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    N.D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    CMS collaboration, Search for heavy long-lived charged particles in pp collisions at \(\sqrt{s}=7\;TeV\), Phys. Lett. B 713 (2012) 408 [arXiv:1205.0272] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    CMS collaboration, Search in the displaced lepton channel for heavy resonances decaying to long-lived neutral particles, CMS-PAS-EXO-11-101 (2011).

  22. [22]

    CDF collaboration, D. Acosta et al., Search for long-lived doubly-charged Higgs bosons in \(p\overline{p}\) collisions at \(\sqrt{s}=1.96\;TeV\), Phys. Rev. Lett. 95 (2005) 071801 [hep-ex/0503004] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    CDF collaboration, A.L. Scott, Search for long-lived parents of the Z 0 boson, Int. J. Mod. Phys. A 20 (2005) 3263 [hep-ex/0410019] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    D0 collaboration, V. Abazov et al., Search for resonant pair production of long-lived particles decaying to \(b\overline{b}\) in \(p\overline{p}\) collisions at \(\sqrt{s}=1.96\;TeV\), Phys. Rev. Lett. 103 (2009) 071801 [arXiv:0906.1787] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    D0 collaboration, V. Abazov et al., Search for long-lived particles decaying into electron or photon pairs with the D0 detector, Phys. Rev. Lett. 101 (2008) 111802 [arXiv:0806.2223] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    D0 collaboration, V. Abazov et al., Search for neutral, long-lived particles decaying into two muons in \(p\overline{p}\) collisions at \(\sqrt{s}=1.96\;TeV\), Phys. Rev. Lett. 97 (2006) 161802 [hep-ex/0607028] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    ATLAS collaboration, Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at \(\sqrt{s}=7\;TeV\), ATLAS-CONF-2012-076 (2012).

  28. [28]

    CDF collaboration, Shalhout et al., A search for dark matter in the monojet plus missing transverse energy signature in 6.7 inverse fb, http://www-cdf.fnal.gov/physics/exotic/r2a/20111124.monojetdarkmatter/index.html (2011).

  29. [29]

    CMS collaboration, Search for dark matter and large extra dimensions in monojet events in pp collisions at \(\sqrt{s}=7\;TeV\), JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    CMS collaboration, Search for dark matter and large extra dimensions in pp collisions yielding a photon and missing transverse energy, Phys. Rev. Lett. 108 (2012) 261803 [arXiv:1204.0821] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, ATLAS-CONF-2012-084 (2012).

  32. [32]

    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at \(\sqrt{s}=7\;TeV\) with the ATLAS detector, ATLAS-CONF-2012-085 (2012).

  33. [33]

    G. Bélanger, M. Heikinheimo and V. Sanz, Model-independent bounds on squarks from monophoton searches, JHEP 08 (2012) 151 [arXiv:1205.1463] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    M. Ibe, T. Moroi and T. Yanagida, Possible signals of Wino LSP at the large hadron collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    G.F. Giudice, T. Han, K. Wang and L.-T. Wang, Nearly degenerate gauginos and dark matter at the LHC, Phys. Rev. D 81 (2010) 115011 [arXiv:1004.4902] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    CMS collaboration, Search for supersymmetry with the razor variables at CMS, PAS-SUS-12-005 (2012).

  38. [38]

    P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a razor to dark matter parameter space at the LHC, Phys. Rev. D 86 (2012) 015010 [arXiv:1203.1662] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    CMS collaboration, Search for anomalous production of multilepton events in pp collisions at \(\sqrt{s}=7\;TeV\), JHEP 06 (2012) 169 [arXiv:1204.5341] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    E. Contreras-Campana, N. Craig, R. Gray, C. Kilic, M. Park, et al., Multi-lepton signals of the Higgs boson, JHEP 04 (2012) 112 [arXiv:1112.2298] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    S. Thomas and S. Somalwar, private communication.

  42. [42]

    CMS collaboration, Performance of τ -lepton reconstruction and identification in CMS, 2012 JINST 7 P01001 [arXiv:1109.6034] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    CMS collaboration, Study of τ reconstruction algorithms using pp collisions data collected at \(\sqrt{s}=7\;TeV\), CMS-PAS-PFT-10-004 (2010).

  44. [44]

    CMS collaboration, CMS strategies for τ reconstruction and identification using particle-flow techniques, CMS-PAS-PFT-08-001 (2008).

  45. [45]

    S.P. Martin, K. Tobe and J.D. Wells, Virtual effects of light gauginos and higgsinos: a precision electroweak analysis of split supersymmetry, Phys. Rev. D 71 (2005) 073014 [hep-ph/0412424] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    N. Maekawa, Vector - Like strong coupling theory with small S and t parameters, Prog. Theor. Phys. 93 (1995) 919 [hep-ph/9406375] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, et al., Updated status of the global electroweak fit and constraints on new physics, Eur. Phys. J. C 72 (2012) 2003 [arXiv:1107.0975] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    G.D. Kribs, T. Plehn, M. Spannowsky and T.M. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    K. Ishiwata and M.B. Wise, Higgs properties and fourth generation leptons, Phys. Rev. D 84 (2011) 055025 [arXiv:1107.1490] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to JiJi Fan.

Additional information

ArXiv ePrint: 1207.4482

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Arkani-Hamed, N., Blum, K., D’Agnolo, R.T. et al. 2:1 for naturalness at the LHC?. J. High Energ. Phys. 2013, 149 (2013). https://doi.org/10.1007/JHEP01(2013)149

Download citation


  • Higgs Physics
  • Beyond Standard Model