Skip to main content

Holographic interpretations of the renormalization group

Abstract

In semiclassical holographic duality, the running couplings of a field theory are conventionally identified with the classical solutions of field equations in the dual gravitational theory. However, this identification is unclear when the bulk fields fluctuate. Recent work has used a Wilsonian framework to propose an alternative identification of the running couplings in terms of non-fluctuating data; in the classical limit, these new couplings do not satisfy the bulk equations of motion. We study renormalization scheme dependence in the latter formalism, and show that a scheme exists in which couplings to single trace operators realize particular solutions to the bulk equations of motion, in the semiclassical limit. This occurs for operators with dimension \( \varDelta \notin \frac{d}{2}+\mathbb{Z} \), for sufficiently low momenta. We then clarify the relation between the saddle point approximation to the Wilsonian effective action (S W ) and boundary conditions at a cutoff surface in AdS space. In particular, we interpret non-local multi-trace operators in S W as arising in Lorentzian AdS space from the temporary passage of excitations through the UV region that has been integrated out. Coarse-graining these operators makes the action effectively local.

References

  1. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  4. L. Susskind and E. Witten, The holographic bound in Anti-de Sitter space, hep-th/9805114 [INSPIRE].

  5. E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

    Article  Google Scholar 

  7. V. Balasubramanian and P. Kraus, Space-time and the holographic renormalization group, Phys. Rev. Lett. 83 (1999) 3605 [hep-th/9903190] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  8. M. Porrati and A. Starinets, RG fixed points in supergravity duals of 4D field theory and asymptotically AdS spaces, Phys. Lett. B 454 (1999) 77 [hep-th/9903085] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  10. D. Brattan, J. Camps, R. Loganayagam and M. Rangamani, CFT dual of the AdS Dirichlet problem : fluid/gravity on cut-off surfaces, JHEP 12 (2011) 090 [arXiv:1106.2577] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  11. D. Marolf and M. Rangamani, Causality and the AdS Dirichlet problem, JHEP 04 (2012) 035 [arXiv:1201.1233] [INSPIRE].

    ADS  Article  Google Scholar 

  12. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  13. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  14. H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  15. I. Heemskerk and J. Polchinski, Holographic and Wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  16. T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. V. Balasubramanian, M.B. McDermott and M. Van Raamsdonk, Momentum-space entanglement and renormalization in quantum field theory, Phys. Rev. D 86 (2012) 045014 [arXiv:1108.3568] [INSPIRE].

    ADS  Google Scholar 

  18. X. Dong, B. Horn, E. Silverstein and G. Torroba, Moduli stabilization and the holographic RG for AdS and DS, arXiv:1209.5392 [INSPIRE].

  19. J. de Boer, The holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  20. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  21. V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  22. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  23. M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  24. M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  25. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  26. V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in Anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  28. O. Aharony, M. Berkooz and E. Silverstein, Multiple trace operators and nonlocal string theories, JHEP 08 (2001) 006 [hep-th/0105309] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  29. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  30. M. Berkooz, A. Sever and A. Shomer, ’double tracedeformations, boundary conditions and space-time singularities, JHEP 05 (2002) 034 [hep-th/0112264] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  31. A. Sever and A. Shomer, A note on multitrace deformations and AdS/CFT, JHEP 07 (2002) 027 [hep-th/0203168] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  32. A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. D. Martelli and W. Mueck, Holographic renormalization and Ward identities with the Hamilton-Jacobi method, Nucl. Phys. B 654 (2003) 248 [hep-th/0205061] [INSPIRE].

    ADS  Article  Google Scholar 

  34. I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [INSPIRE].

  35. A. Lawrence and A. Sever, Holography and renormalization in lorentzian signature, JHEP 10 (2006) 013 [hep-th/0606022] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  36. V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of Anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. W. Muck, Running scaling dimensions in holographic renormalization group flows, JHEP 08 (2010) 085 [arXiv:1006.2987] [INSPIRE].

    ADS  Article  Google Scholar 

  38. E.T. Akhmedov, Notes on multitrace operators and holographic renormalization group, hep-th/0202055 [INSPIRE].

  39. O. Aharony, M. Berkooz and E. Silverstein, Nonlocal string theories on AdS 3 × S 3 and stable nonsupersymmetric backgrounds, Phys. Rev. D 65 (2002) 106007 [hep-th/0112178] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. M. Abramowitz and I. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Applied mathematics series, Dover Publications, Dover U.K. (1965).

    Google Scholar 

  41. C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons contact terms in three dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].

    ADS  Article  Google Scholar 

  42. N. Borodatchenkova, M. Haack and W. Muck, Towards holographic renormalization of fake supergravity, Nucl. Phys. B 815 (2009) 215 [arXiv:0811.3191] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  43. W. Mueck, An improved correspondence formula for AdS/CFT with multitrace operators, Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [INSPIRE].

    ADS  Google Scholar 

  44. T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  45. T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].

  46. R. Feynman and J. Vernon, F.L., The theory of a general quantum system interacting with a linear dissipative system, Annals Phys. 24 (1963) 118 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albion Lawrence.

Additional information

ArXiv ePrint: 1211.1729

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Balasubramanian, V., Guica, M. & Lawrence, A. Holographic interpretations of the renormalization group. J. High Energ. Phys. 2013, 115 (2013). https://doi.org/10.1007/JHEP01(2013)115

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)115

Keywords

  • Gauge-gravity correspondence
  • AdS-CFT Correspondence
  • Renormalization Group