Top polarisation studies in Ht and W t production

  • R. M. Godbole
  • L. Hartgring
  • I. Niessen
  • C. D. White
Open Access
Article

Abstract

The polarisation of top quarks produced in high energy processes can be a very sensitive probe of physics beyond the Standard Model. The kinematical distributions of the decay products of the top quark can provide clean information on the polarisation of the produced top and thus can probe new physics effects in the top quark sector. We study some of the recently proposed polarisation observables involving the decay products of the top quark in the context of Ht and W t production. We show that the effect of the top polarisation on the decay lepton azimuthal angle distribution, studied recently for these processes at leading order in QCD, is robust with respect to the inclusion of next-to-leading order and parton shower corrections. We also consider the leptonic polar angle, as well as recently proposed energy-related distributions of the top decay products. We construct asymmetry parameters from these observables, which can be used to distinguish the new physics signal from the W t background and discriminate between different values of tan β and mH − in a general type II two-Higgs doublet model. Finally, we show that similar observables may be useful in separating a Standard Model W t signal from the much larger QCD induced top pair production background.

Keywords

Higgs Physics Beyond Standard Model Standard Model 

References

  1. [1]
    R. Harlander, M. Jezabek, J.H. Kuhn and T. Teubner, Polarization in top quark pair production near threshold, Phys. Lett. B 346 (1995) 137 [hep-ph/9411395] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    K.-i. Hikasa, J.M. Yang and B.-L. Young, R-parity violation and top quark polarization at the Fermilab Tevatron collider, Phys. Rev. D 60 (1999) 114041 [hep-ph/9908231] [INSPIRE].ADSGoogle Scholar
  3. [3]
    S.D. Rindani and M.M. Tung, Longitudinal quark polarization in \({e^{ + }}{e^{ - }} \to t\overline t\) and chromoelectric and chromomagnetic dipole couplings of the top quark, Eur. Phys. J. C 11 (1999) 485 [hep-ph/9904319] [INSPIRE].ADSGoogle Scholar
  4. [4]
    E. Boos, H. Martyn, G.A. Moortgat-Pick, M. Sachwitz, A. Sherstnev, et al., Polarization in sfermion decays: determining tan β and trilinear couplings, Eur. Phys. J. C 30 (2003) 395 [hep-ph/0303110] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Gajdosik, R.M. Godbole and S. Kraml, Fermion polarization in sfermion decays as a probe of CP phases in the MSSM, JHEP 09 (2004) 051 [hep-ph/0405167] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B.C. Allanach, C. Grojean, P.Z. Skands, E. Accomando, G. Azuelos, et al., Les Houches physics at TeV colliders 2005 beyond the standard model working group: summary report, hep-ph/0602198 [INSPIRE].
  7. [7]
    R.M. Godbole, S. Kraml, S.D. Rindani and R.K. Singh, Probing CP-violating Higgs contributions in \(\gamma \gamma \to f\overline f\) through fermion polarization, Phys. Rev. D 74 (2006) 095006 [Erratum ibid. D 74 (2006) 119901] [hep-ph/0609113] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R.M. Godbole, S.D. Rindani and R.K. Singh, Lepton distribution as a probe of new physics in production and decay of the t quark and its polarization, JHEP 12 (2006) 021 [hep-ph/0605100] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P.-Y. Li, G.-R. Lu, J.M. Yang and H. Zhang, Probing R-parity violating interactions from top quark polarization at LHC, Eur. Phys. J. C 51 (2007) 163 [hep-ph/0608223] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Mohammadi Najafabadi, Secondary particles spectra in decay of polarized top quark with anomalous tWb coupling, J. Phys. G 34 (2007) 39 [hep-ph/0601155] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Bhupal Dev, A. Djouadi, R. Godbole, M. Muhlleitner and S. Rindani, Determining the CP properties of the Higgs boson, Phys. Rev. Lett. 100 (2008) 051801 [arXiv:0707.2878] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Eriksson, G. Ingelman, J. Rathsman and O. Stal, New angles on top quark decay to a charged Higgs, JHEP 01 (2008) 024 [arXiv:0710.5906] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Perelstein and A. Weiler, Polarized tops from stop decays at the LHC, JHEP 03 (2009) 141 [arXiv:0811.1024] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.M. Nojiri and M. Takeuchi, Study of the top reconstruction in top-partner events at the LHC, JHEP 10 (2008) 025 [arXiv:0802.4142] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Shelton, Polarized tops from new physics: signals and observables, Phys. Rev. D 79 (2009) 014032 [arXiv:0811.0569] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R.M. Godbole, S.D. Rindani, K. Rao and R.K. Singh, Top polarization as a probe of new physics, AIP Conf. Proc. 1200 (2010) 682 [arXiv:0911.3622] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Arai, K. Huitu, S.K. Rai and K. Rao, Single production of sleptons with polarized tops at the large hadron collider, JHEP 08 (2010) 082 [arXiv:1003.4708] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Djouadi, G. Moreau, F. Richard and R.K. Singh, The forward-backward asymmetry of top quark production at the Tevatron in warped extra dimensional models, Phys. Rev. D 82 (2010) 071702 [arXiv:0906.0604] [INSPIRE].ADSGoogle Scholar
  19. [19]
    D. Krohn, J. Shelton and L.-T. Wang, Measuring the polarization of boosted hadronic tops, JHEP 07 (2010) 041 [arXiv:0909.3855] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R.M. Godbole, K. Rao, S.D. Rindani and R.K. Singh, On measurement of top polarization as a probe of \(t\overline t\) production mechanisms at the LHC, JHEP 11 (2010) 144 [arXiv:1010.1458] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Aguilar-Saavedra and J. Bernabeu, W polarisation beyond helicity fractions in top quark decays, Nucl. Phys. B 840 (2010) 349 [arXiv:1005.5382] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K. Huitu, S. Kumar Rai, K. Rao, S.D. Rindani and P. Sharma, Probing top charged-Higgs production using top polarization at the large hadron collider, JHEP 04 (2011) 026 [arXiv:1012.0527] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Cao, L. Wu and J.M. Yang, New physics effects on top quark spin correlation and polarization at the LHC: a comparative study in different models, Phys. Rev. D 83 (2011) 034024 [arXiv:1011.5564] [INSPIRE].ADSGoogle Scholar
  25. [25]
    D.-W. Jung, P. Ko and J.S. Lee, Longitudinal top polarization as a probe of a possible origin of forward-backward asymmetry of the top quark at the Tevatron, Phys. Lett. B 701 (2011) 248 [arXiv:1011.5976] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D. Choudhury, R.M. Godbole, S.D. Rindani and P. Saha, Top polarization, forward-backward asymmetry and new physics, Phys. Rev. D 84 (2011) 014023 [arXiv:1012.4750] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Gopalakrishna, T. Han, I. Lewis, Z.-g. Si and Y.-F. Zhou, Chiral couplings of W′ and top quark polarization at the LHC, Phys. Rev. D 82 (2010) 115020 [arXiv:1008.3508] [INSPIRE].ADSGoogle Scholar
  28. [28]
    R. Godbole, C. Hangst, M. Muhlleitner, S. Rindani and P. Sharma, Model-independent analysis of Higgs spin and CP properties in the process \({e^{ + }}{e^{ - }} \to t\overline t \,\Phi\) Eur. Phys. J. C 71 (2011) 1681 [arXiv:1103.5404] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Krohn, T. Liu, J. Shelton and L.-T. Wang, A polarized view of the top asymmetry, Phys. Rev. D 84 (2011) 074034 [arXiv:1105.3743] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Baumgart and B. Tweedie, Discriminating top-antitop resonances using azimuthal decay correlations, JHEP 09 (2011) 049 [arXiv:1104.2043] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S.D. Rindani and P. Sharma, Probing anomalous tbW couplings in single-top production using top polarization at the large hadron collider, JHEP 11 (2011) 082 [arXiv:1107.2597] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Baglio, M. Beccaria, A. Djouadi, G. Macorini, E. Mirabella, et al., The left-right asymmetry of top quarks in associated top-charged Higgs bosons at the LHC as a probe of the tan β parameter, Phys. Lett. B 705 (2011) 212 [arXiv:1109.2420] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S.D. Rindani and P. Sharma, CP violation in tbW couplings at the LHC, arXiv:1108.4165 [INSPIRE].
  34. [34]
    B. Ananthanarayan, M. Patra and S.D. Rindani, Top-spin analysis of new scalar and tensor interactions in e + e collisions with beam polarization, Phys. Rev. D 83 (2011) 016010 [arXiv:1007.5183] [INSPIRE].ADSGoogle Scholar
  35. [35]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Falkowski, G. Perez and M. Schmaltz, Spinning the top, arXiv:1110.3796 [INSPIRE].
  37. [37]
    M. Jezabek and J.H. Kuhn, Lepton spectra from heavy quark decay, Nucl. Phys. B 320 (1989) 20 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Czarnecki, M. Jezabek and J.H. Kuhn, Lepton spectra from decays of polarized top quarks, Nucl. Phys. B 351 (1991) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Brandenburg, Z. Si and P. Uwer, QCD corrected spin analyzing power of jets in decays of polarized top quarks, Phys. Lett. B 539 (2002) 235 [hep-ph/0205023] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    B. Grzadkowski and Z. Hioki, New hints for testing anomalous top quark interactions at future linear colliders, Phys. Lett. B 476 (2000) 87 [hep-ph/9911505] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    B. Grzadkowski and Z. Hioki, Decoupling of anomalous top decay vertices in angular distribution of secondary particles, Phys. Lett. B 557 (2003) 55 [hep-ph/0208079] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    B. Grzadkowski and Z. Hioki, Angular distribution of leptons in general \(t\overline t\) production and decay, Phys. Lett. B 529 (2002) 82 [hep-ph/0112361] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Z. Hioki, A new decoupling theorem in top quark physics, in Seogwipo 2002, Linear colliders (2002) 333 [hep-ph/0210224] [INSPIRE].
  44. [44]
    K. Ohkuma, Effects of top quark anomalous decay couplings at γγ colliders, Nucl. Phys. Proc. Suppl. 111 (2002) 285 [hep-ph/0202126] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S.D. Rindani, Effect of anomalous tBW vertex on decay lepton distributions in \({e^{ + }}{e^{ - }} \to t\overline t\) and CP-violating asymmetries, Pramana 54 (2000) 791 [hep-ph/0002006] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R.M. Godbole, S.D. Rindani and R.K. Singh, Study of CP property of the Higgs at a photon collider using \(\gamma \gamma \to t\overline t \to lX\) Phys. Rev. D 67 (2003) 095009 [Erratum ibid. D 71 (2005) 039902] [hep-ph/0211136] [INSPIRE].ADSGoogle Scholar
  47. [47]
    ATLAS Collaboration, Prospects for top anti-top resonance searches using early ATLAS data., PHYS-PUB-2010-008 (2010).Google Scholar
  48. [48]
    C. Weydert, S. Frixione, M. Herquet, M. Klasen, E. Laenen, et al., Charged Higgs boson production in association with a top quark in MC@NLO, Eur. Phys. J. C 67 (2010) 617 [arXiv:0912.3430] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T.M. Tait, The tW mode of single top production, Phys. Rev. D 61 (2000) 034001 [hep-ph/9909352] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J.M. Campbell and F. Tramontano, Next-to-leading order corrections to Wt production and decay, Nucl. Phys. B 726 (2005) 109 [hep-ph/0506289] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Zhu, Next-to-leading order QCD corrections to BgtW at the CERN large hadron collider, Phys. Lett. B 524 (2002) 283 [Erratum ibid. B 537 (2002) 351-352] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    C.D. White, S. Frixione, E. Laenen and F. Maltoni, Isolating Wt production at the LHC, JHEP 11 (2009) 074 [arXiv:0908.0631] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    W. Bernreuther, Top quark physics at the LHC, J. Phys. G 35 (2008) 083001 [arXiv:0805.1333] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Frixione and B.R. Webber, The MC and NLO 3.4 event generator, arXiv:0812.0770 [INSPIRE].
  59. [59]
    S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber and C.D. White, The MCaNLO 4.0 event generator, arXiv:1010.0819 [INSPIRE].
  60. [60]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations, JHEP 04 (2007) 081 [hep-ph/0702198] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].ADSGoogle Scholar
  64. [64]
    S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    E. Re, Single-top wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].ADSGoogle Scholar
  66. [66]
    C. Weydert, Associated production of top quarks and charged Higgs bosons at next-to-leading order, Nuovo Cim. C 33N4 (2010) 343 [arXiv:1011.6249] [INSPIRE].Google Scholar
  67. [67]
    N. Kauer and D. Zeppenfeld, Finite width effects in top quark production at hadron colliders, Phys. Rev. D 65 (2002) 014021 [hep-ph/0107181] [INSPIRE].ADSGoogle Scholar
  68. [68]
    B.P. Kersevan and I. Hinchliffe, A consistent prescription for the production involving massive quarks in hadron collisions, JHEP 09 (2006) 033 [hep-ph/0603068] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to W W bb production at hadron colliders, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSGoogle Scholar
  72. [72]
    T. Plehn, Production of supersymmetric particles at high-energy colliders, hep-ph/9809319 [INSPIRE].
  73. [73]
    T. Plehn and C. Weydert, Charged Higgs production with a top in MC@NLO, PoS CHARGED2010 (2010) 026 [arXiv:1012.3761] [INSPIRE].Google Scholar
  74. [74]
    T. Binoth, D. Goncalves Netto, D. Lopez-Val, K. Mawatari, T. Plehn, et al., Automized squark-neutralino production to next-to-leading order, Phys. Rev. D 84 (2011) 075005 [arXiv:1108.1250] [INSPIRE].ADSGoogle Scholar
  75. [75]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    UTfit collaboration, M. Bona et al., An improved standard model prediction of BR(Bτ ν) and its implications for new physics, Phys. Lett. B 687 (2010) 61 [arXiv:0908.3470] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Uncertainties on α s in global PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C 64 (2009) 653 [arXiv:0905.3531] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions, Eur. Phys. J. C 70 (2010) 51 [arXiv:1007.2624] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  82. [82]
    CDF collaboration, T. Aaltonen et al., First observation of electroweak single top quark production, Phys. Rev. Lett. 103 (2009) 092002 [arXiv:0903.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    D0 collaboration, V. Abazov et al., Observation of single top quark production, Phys. Rev. Lett. 103 (2009) 092001 [arXiv:0903.0850] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    D0 collaboration, V.M. Abazov et al., Model-independent measurement of t-channel single top quark production in \(p\overline p\) collisions at \(\sqrt {s} = 1.96{ }TeV\), Phys. Lett. B 705 (2011) 313 [arXiv:1105.2788] [INSPIRE].ADSGoogle Scholar
  85. [85]
    CMS collaboration, S. Chatrchyan et al., Measurement of the t-channel single top quark production cross section in pp collisions at \(\sqrt {s} = 7{ }TeV\), Phys. Rev. Lett. 107 (2011) 091802 [arXiv:1106.3052] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    ATLAS collaboration, R. Schwienhorst, Single top-quark production with the ATLAS detector in pp collisions at \(\sqrt {s} = 7{ }TeV\), arXiv:1110.2192 [INSPIRE].
  87. [87]
    B. Harris, E. Laenen, L. Phaf, Z. Sullivan and S. Weinzierl, The fully differential single top quark cross-section in next to leading order QCD, Phys. Rev. D 66 (2002) 054024 [hep-ph/0207055] [INSPIRE].ADSGoogle Scholar
  88. [88]
    J.M. Campbell, R. Ellis and F. Tramontano, Single top production and decay at next-to-leading order, Phys. Rev. D 70 (2004) 094012 [hep-ph/0408158] [INSPIRE].ADSGoogle Scholar
  89. [89]
    Q.-H. Cao and C.-P. Yuan, Single top quark production and decay at next-to-leading order in hadron collision, Phys. Rev. D 71 (2005) 054022 [hep-ph/0408180] [INSPIRE].ADSGoogle Scholar
  90. [90]
    Q.-H. Cao, R. Schwienhorst and C.-P. Yuan, Next-to-leading order corrections to single top quark production and decay at Tevatron. 1. s channel process, Phys. Rev. D 71 (2005) 054023 [hep-ph/0409040] [INSPIRE].ADSGoogle Scholar
  91. [91]
    Q.-H. Cao, R. Schwienhorst, J.A. Benitez, R. Brock and C.-P. Yuan, Next-to-leading order corrections to single top quark production and decay at the tevatron: 2. t channel process, Phys. Rev. D 72 (2005) 094027 [hep-ph/0504230] [INSPIRE].ADSGoogle Scholar
  92. [92]
    S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in MC@NLO, JHEP 03 (2006) 092 [hep-ph/0512250] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 1002 (2010) 011] [arXiv:0907.4076] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503 [arXiv:1103.2792] [INSPIRE].ADSGoogle Scholar
  95. [95]
    P. Falgari, F. Giannuzzi, P. Mellor and A. Signer, Off-shell effects for t-channel and s-channel single-top production at NLO in QCD, Phys. Rev. D 83 (2011) 094013 [arXiv:1102.5267] [INSPIRE].ADSGoogle Scholar
  96. [96]
    P. Falgari, P. Mellor and A. Signer, Production-decay interferences at NLO in QCD for t-channel single-top production, Phys. Rev. D 82 (2010) 054028 [arXiv:1007.0893] [INSPIRE].ADSGoogle Scholar
  97. [97]
    Q.-H. Cao, J. Wudka and C.-P. Yuan, Search for new physics via single top production at the LHC, Phys. Lett. B 658 (2007) 50 [arXiv:0704.2809] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    Z. Sullivan, Angular correlations in single-top-quark and wjj production at next-to-leading order, Phys. Rev. D 72 (2005) 094034 [hep-ph/0510224] [INSPIRE].ADSGoogle Scholar
  99. [99]
    Z. Sullivan, Understanding single-top-quark production and jets at hadron colliders, Phys. Rev. D 70 (2004) 114012 [hep-ph/0408049] [INSPIRE].ADSGoogle Scholar
  100. [100]
    P. Motylinski, Angular correlations in t-channel single top production at the LHC, Phys. Rev. D 80 (2009) 074015 [arXiv:0905.4754] [INSPIRE].ADSGoogle Scholar
  101. [101]
    S. Catani, Y.L. Dokshitzer, M. Seymour and B. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • R. M. Godbole
    • 1
  • L. Hartgring
    • 2
  • I. Niessen
    • 3
  • C. D. White
    • 4
  1. 1.Center for High Energy Physics, Indian Institute of ScienceBangaloreIndia
  2. 2.NikhefAmsterdamThe Netherlands
  3. 3.Theoretical High Energy Physics, IMAPP, Faculty of ScienceNijmegenThe Netherlands
  4. 4.School of Physics and Astronomy, Scottish Universities Physics AllianceUniversity of GlasgowGlasgowU.K.

Personalised recommendations