Skip to main content
Log in

The particle number in Galilean holography

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recently, gravity duals for certain Galilean-invariant conformal field theories have been constructed. In this paper, we point out that the spectrum of the particle number operator in the examples found so far is not a necessary consequence of the existence of a gravity dual. We record some progress towards more realistic spectra. In particular, we construct bulk systems with asymptotic Schrödinger symmetry and only one extra dimension. In examples, we find solutions which describe these Schrödinger-symmetric systems at finite density. A lift to M-theory is used to resolve a curvature singularity. As a happy byproduct of this analysis, we realize a state which could be called a holographic Mott insulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. T. Mehen, I.W. Stewart and M.B. Wise, Conformal invariance for non-relativistic field theory, Phys. Lett. B 474 (2000) 145 [hep-th/9910025] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D 76 (2007) 086004 [arXiv:0706.3746] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. J.M. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Adams, K. Balasubramanian and J. McGreevy, Hot spacetimes for cold atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].

    Article  ADS  Google Scholar 

  8. P. Kovtun and D. Nickel, Black holes and non-relativistic quantum systems, Phys. Rev. Lett. 102 (2009) 011602 [arXiv:0809.2020] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [arXiv:0810.0298] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. E. O’Colgain and H. Yavartanoo, NR CFT 3 duals in M-theory, JHEP 09 (2009) 002 [arXiv:0904.0588] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. N. Bobev, A. Kundu and K. Pilch, Supersymmetric IIB solutions with Schrödinger symmetry, JHEP 07 (2009) 107 [arXiv:0905.0673] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Donos and J.P. Gauntlett, Solutions of type IIB and D = 11 supergravity with Schrödinger(z) symmetry, JHEP 07 (2009) 042 [arXiv:0905.1098] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. H. Ooguri and C.-S. Park, Supersymmetric non-relativistic geometries in M-theory, Nucl. Phys. B 824 (2010) 136 [arXiv:0905.1954] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. E. O’Colgain, O. Varela and H. Yavartanoo, Non-relativistic M-theory solutions based on Kähler-Einstein spaces, JHEP 07 (2009) 081 [arXiv:0906.0261] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Donos and J.P. Gauntlett, Schrödinger invariant solutions of type IIB with enhanced supersymmetry, JHEP 10 (2009) 073 [arXiv:0907.1761] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Jeong, H.-C. Kim, S. Lee, E. O’Colgain and H. Yavartanoo, Schrödinger invariant solutions of M-theory with enhanced supersymmetry, JHEP 03 (2010) 034 [arXiv:0911.5281] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. H.H. Bateman, The mathematical analysis of electric and optical wave-motion, Dover, New York U.S.A. (1955).

    Google Scholar 

  18. C. Duval, G. Burdet, H.P. Kunzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev. D 31 (1985) 1841 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. C. Duval, G.W. Gibbons and P. Horvathy, Celestial mechanics, conformal structures and gravitational waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. R. Britto-Pacumio, A. Strominger and A. Volovich, Holography for coset spaces, JHEP 11 (1999) 013 [hep-th/9905211] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Taylor, Holography for degenerate boundaries, hep-th/0001177 [SPIRES].

  22. D. Yamada, Thermodynamics of black holes in Schrödinger space, Class. Quant. Grav. 26 (2009) 075006 [arXiv:0809.4928] [SPIRES].

    Article  ADS  Google Scholar 

  23. J.L.F. Barbon and C.A. Fuertes, Ideal gas matching for thermal Galilean holography, Phys. Rev. D 80 (2009) 026006 [arXiv:0903.4452] [SPIRES].

    ADS  Google Scholar 

  24. A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. M. Alishahiha and O.J. Ganor, Twisted backgrounds, pp-waves and nonlocal field theories, JHEP 03 (2003) 006 [hep-th/0301080] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Hellerman and J. Polchinski, Compactification in the lightlike limit, Phys. Rev. D 59 (1999) 125002 [hep-th/9711037] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. E. Inönü and E.P. Wigner, Representations of the Galilei group, Nuovo Cim. 9 (1952) 705.

    Article  MATH  Google Scholar 

  28. S.A. Hartnoll, Quantum critical dynamics from black holes, arXiv:0909.3553 [SPIRES].

  29. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].

    Google Scholar 

  31. E. Witten and J. Bagger, Quantization of Newton’s constant in certain supergravity theories, Phys. Lett. B 115 (1982) 202 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. L. Álvarez-Gaumé and E. Witten, Gravitational anomalies, Nucl. Phys. B 234 (1984) 269 [SPIRES].

    Article  ADS  Google Scholar 

  33. S. Hellerman, A universal inequality for CFT and quantum gravity, arXiv:0902.2790 [SPIRES].

  34. T. Nishioka, S. Ryu and T. Takayanagi, Holographic superconductor/insulator transition at zero temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [SPIRES].

    Article  ADS  Google Scholar 

  35. W.D. Goldberger, AdS/CFT duality for non-relativistic field theory, JHEP 03 (2009) 069 [arXiv:0806.2867] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. J.L.F. Barbon and C.A. Fuertes, On the spectrum of nonrelativistic AdS/CFT, JHEP 09 (2008) 030 [arXiv:0806.3244] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. G.W. Gibbons, G.T. Horowitz and P.K. Townsend, Higher dimensional resolution of dilatonic black hole singularities, Class. Quant. Grav. 12 (1995) 297 [hep-th/9410073] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  40. E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. S.W. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  43. S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [SPIRES].

    Article  ADS  Google Scholar 

  44. W. Kohn, Theory of the insulating state, Phys. Rev. 133 (1964) A171.

    Article  MathSciNet  ADS  Google Scholar 

  45. D.J. Scalapino, S.R. White, S.C. Zhang, Superfluid density and the Drude weight of the Hubbard model, Phys. Rev. Lett. 68 (1992) 2830.

    Article  ADS  Google Scholar 

  46. M. Oshikawa, Insulator, conductor and commensurability: a topological approach, Phys. Rev. Lett. 90 (2003) 236401 [Erratum ibid. 91 (2003) 109901] [cond-mat/0301338].

    Article  ADS  Google Scholar 

  47. I.R. Klebanov, S.S. Pufu and T. Tesileanu, Membranes with topological charge and AdS4/CFT3 correspondence, Phys. Rev. D 81 (2010) 125011 [arXiv:1004.0413] [SPIRES].

    ADS  Google Scholar 

  48. I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80 (2008) 885 [arXiv:0704.3011] [SPIRES].

    Article  ADS  Google Scholar 

  49. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. J.M. Maldacena and C. Núñez, Towards the large-N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  52. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  53. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES].

  55. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  56. G. Coss, K. Balasubramanian and J. McGreevy, work in progress.

  57. S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  58. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  59. C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [SPIRES].

    Article  ADS  Google Scholar 

  60. U. Gürsoy, Continuous Hawking-Page transitions in Einstein-scalar gravity, arXiv:1007.0500 [SPIRES].

  61. M.J. Duff, H. Lü, C.N. Pope, AdS 5 × S 5 untwisted, Nucl. Phys. B 532 (1998) 181 [hep-th/9803061] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik Balasubramanian.

Additional information

ArXiv ePrint: 1007.2184

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasubramanian, K., McGreevy, J. The particle number in Galilean holography. J. High Energ. Phys. 2011, 137 (2011). https://doi.org/10.1007/JHEP01(2011)137

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)137

Keywords

Navigation