Hydrodynamics of R-charged D1-branes

  • Justin R. David
  • Manavendra Mahato
  • Somyadip Thakur
  • Spenta R. Wadia
Article

Abstract

We study the hydrodynamic properties of strongly coupled SU(N) Yang-Mills theory of the D1-brane at finite temperature and at a non-zero density of R-charge in the framework of gauge/gravity duality. The gravity dual description involves a charged black hole solution of an Einstein-Maxwell-dilaton system in 3 dimensions which is obtained by a consistent truncation of the spinning D1-brane in 10 dimensions. We evaluate thermal and electrical conductivity as well as the bulk viscosity as a function of the chemical potential conjugate to the R-charges of the D1-brane. We show that the ratio of bulk viscosity to entropy density is independent of the chemical potential and is equal to 1/π4. The thermal conductivity and bulk viscosity obey a relationship similar to the Wiedemann-Franz law. We show that at the boundary of thermodynamic stability, the charge diffusion mode becomes unstable and the transport coefficients exhibit critical behaviour. Our method for evaluating the transport coefficients relies on expressing the second order differential equations in terms of a first order equation which dictates the radial evolution of the transport coefficient. The radial evolution equations can be solved exactly for the transport coefficients of our interest. We observe that transport coefficients of the D1-brane theory are related to that of the M2-brane by an overall proportionality constant which sets the dimensions.

Keywords

Gauge-gravity correspondence D-branes Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    M. Rangamani, Gravity & hydrodynamics: Lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    H.J. Boonstra, K. Skenderis and P.K. Townsend, The domain wall/QFT correspondence, JHEP 01 (1999) 003 [hep-th/9807137] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    J. Mas and J. Tarrio, Hydrodynamics from the Dp-brane, JHEP 05 (2007) 036 [hep-th/0703093] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    J.R. David, M. Mahato and S.R. Wadia, Hydrodynamics from the D1-brane, JHEP 04 (2009) 042 [arXiv:0901.2013] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP 09 (2008) 094 [arXiv:0807.3324] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    A. Buchel, Bulk viscosity of gauge theory plasma at strong coupling, Phys. Lett. B 663 (2008) 286 [arXiv:0708.3459] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    V.V. Deshpande, M. Bockrath, L.I. Glazman and A. Yacoby, Electron liquids and solids in one dimension, Nature 464 (2010) 209.CrossRefADSGoogle Scholar
  11. [11]
    D. Maity, S. Sarkar, N. Sircar, B. Sathiapalan and R. Shankar, Properties of CFT s dual to Charged BTZ black-hole, Nucl. Phys. B 839 (2010) 526 [arXiv:0909.4051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    L.-Y. Hung and A. Sinha, Holographic quantum liquids in 1 + 1 dimensions, JHEP 01 (2010) 114 [arXiv:0909.3526] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    C.P. Herzog, The hydrodynamics of M-theory, JHEP 12 (2002) 026 [hep-th/0210126] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    C.P. Herzog, The sound of M-theory, Phys. Rev. D 68 (2003) 024013 [hep-th/0302086] [SPIRES].ADSGoogle Scholar
  15. [15]
    O. Saremi, The viscosity bound conjecture and hydrodynamics of M2-brane theory at finite chemical potential, JHEP 10 (2006) 083 [hep-th/0601159] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    T. Harmark and N.A. Obers, Thermodynamics of spinning branes and their dual field theories, JHEP 01 (2000) 008 [hep-th/9910036] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    M. Cvetič, H. Lü and C.N. Pope, Consistent Kaluza-Klein sphere reductions, Phys. Rev. D 62 (2000) 064028 [hep-th/0003286] [SPIRES].ADSGoogle Scholar
  21. [21]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [SPIRES].ADSGoogle Scholar
  22. [22]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    N. Banerjee and S. Dutta, Nonlinear hydrodynamics from flow of retarded Green’s function, JHEP 08 (2010) 041 [arXiv:1005.2367] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, arXiv:1006.1902[SPIRES].
  26. [26]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].ADSGoogle Scholar
  27. [27]
    S. Jain, Universal thermal and electrical conductivity from holography, JHEP 11 (2010) 092 [arXiv:1008.2944] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. II: Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    J.D. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region, Phys. Rev. D 27 (1983) 140 [SPIRES].ADSGoogle Scholar
  33. [33]
    C.L. Kane and E.J. Mele, Size, shape, and low energy electronic structure of carbon nanotubes, Phys. Rev. Lett. 78 (1997) 1932 [cond-mat/9608146].CrossRefADSGoogle Scholar
  34. [34]
    L. Brey and H.A. Fertig, Electronic states of graphene nanoribbons studied with the dirac equation, Phys. Rev. B 73 (2006) 235411 [cond-mat/0603107].ADSGoogle Scholar
  35. [35]
    K. Damle and S. Sachdev, Spin dynamics and transport in gapped one-dimensional heisenberg antiferromagnets at nonzero temperatures, Phys. Rev. B 57 (1998) 8307 [cond-mat/9711014].ADSGoogle Scholar
  36. [36]
    C. Buragohain and S. Sachdev, Intermediate-temperature dynamics of one-dimensional heisenberg antiferromagnets, Phys. Rev. B 59 (1999) 9285 [cond-mat/9811083].ADSGoogle Scholar
  37. [37]
    S. Barrau, P. Demont, A. Peigney, C. Laurent and C. Lacabanne, DC and AC conductivity of carbon nanotubes-polyepoxy composites, Macromolecules 36(14) (2003) 5187. CrossRefADSGoogle Scholar
  38. [38]
    S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Justin R. David
    • 1
  • Manavendra Mahato
    • 2
  • Somyadip Thakur
    • 1
  • Spenta R. Wadia
    • 2
    • 3
  1. 1.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Theoretical PhysicsTIFRMumbaiIndia
  3. 3.International Centre for Theoretical Sciences, TIFRMumbaiIndia

Personalised recommendations