Skip to main content
Log in

A covariant form of the Navier-Stokes equation for the infinite dimensional Galilean conformal algebra

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We demonstrate that the Navier-Stokes equation can be covariantized under the full infinite dimensional Galilean Conformal Algebra (GCA), such that it reduces to the usual Navier-Stokes equation in an inertial frame. The covariantization is possible only for incompressible flows, i.e when the divergence of the velocity field vanishes. Using the continuity equation, we can fix the transformation of pressure and density under GCA uniquely. We also find that when all chemical potentials vanish, c s , which denotes the speed of sound in an inertial frame comoving with the flow, must either be a fundamental constant or given in terms of microscopic parameters. We will discuss how both could be possible. In absence of chemical potentials, we also find that the covariance under GCA implies that either the viscosity should vanish or the microscopic theory should have a length scale or a time scale or both. We also find that the higher derivative corrections to the Naver-Stokes equation, can be covariantized, only if they are restricted to certain possible combinations in the inertial frame. We explicitly evaluate all possible three derivative corrections. Finally, we argue that our analysis hints that the parent relativistic theory with relativistic conformal symmetry needs to be deformed before the contraction is taken to produce a sensible GCA invariant dynamical limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  3. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. J. Lukierski, P.C. Stichel and W.J. Zakrzewski, Exotic Galilean conformal symmetry and its dynamical realisations, Phys. Lett. A 357 (2006) 1 [hep-th/0511259] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. M. Alishahiha, A. Davody and A. Vahedi, On AdS/CFT of Galilean conformal field theories, JHEP 08 (2009) 022 [arXiv:0903.3953] [SPIRES].

    Article  ADS  Google Scholar 

  6. A. Bagchi and I. Mandal, On representations and correlation functions of Galilean conformal algebras, Phys. Lett. B 675 (2009) 393 [arXiv:0903.4524] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. C. Leiva and M.S. Plyushchay, Conformal symmetry of relativistic and nonrelativistic systems and AdS/CFT correspondence, Ann. Phys. 307 (2003) 372 [hep-th/0301244] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. M. Rangamani, Gravity & Hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [SPIRES].

    Article  MathSciNet  Google Scholar 

  9. C. Duval and P.A. Horvathy, Non-relativistic conformal symmetries and Newton-Cartan structures, J. Phys. A 42 (2009) 465206 [arXiv:0904.0531] [SPIRES].

    Google Scholar 

  10. D. Martelli and Y. Tachikawa, Comments on Galilean conformal field theories and their geometric realization, arXiv:0903.5184 [SPIRES].

  11. A. Bagchi and R. Gopakumar, Galilean conformal algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [SPIRES].

    Article  ADS  Google Scholar 

  12. J. Lukierski, P.C. Stichel and W.J. Zakrzewski, Galilean-invariant (2 + 1)-dimensional models with a Chern-Simons-like term and D = 2 noncommutative geometry, Annals Phys. 260 (1997) 224 [hep-th/9612017] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. P.A. Horvathy and M.S. Plyushchay, Non-relativistic anyons and exotic Galilean symmetry, JHEP 06 (2002) 033 [hep-th/0201228] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. P.A. Horvathy and M.S. Plyushchay, Anyon wave equations and the noncommutative plane, Phys. Lett. B 595 (2004) 547 [hep-th/0404137] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. M.S. Plyushchay, Relativistic particle with torsion, Majorana equation and fractional spin, Phys. Lett. B 262 (1991) 71 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. M.S. Plyushchay, The model of relativistic particle with torsion, Nucl. Phys. B 362 (1991) 54 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non- relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Adams, K. Balasubramanian and J. McGreevy, Hot spacetimes for cold atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].

    Article  ADS  Google Scholar 

  22. A. Volovich and C. Wen, Correlation functions in non-relativistic holography, JHEP 05 (2009) 087 [arXiv:0903.2455] [SPIRES].

    Article  ADS  Google Scholar 

  23. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].

  24. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  26. R. Loganayagam, Entropy current in conformal hydrodynamics, JHEP 05 (2008) 087 [arXiv:0801.3701] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    Article  ADS  Google Scholar 

  28. H.P. Kunzle, Covariant newtonian limit of Lorentz space-times, Gen. Rel. Grav. 7 (1976) 445.

    MathSciNet  ADS  Google Scholar 

  29. Landau and Lifshitz, Fluid mechanics, Chapter 2, Pergamon Press, Oxford U.K. (1959).

    Google Scholar 

  30. T. Schafer and D. Teaney, Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas, Rept. Prog. Phys. 72 (2009) 126001 [arXiv:0904.3107] [SPIRES].

    Article  Google Scholar 

  31. M. Rangamani, S.F. Ross, D.T. Son and E.G. Thompson, Conformal non-relativistic hydrodynamics from gravity, JHEP 01 (2009) 075 [arXiv:0811.2049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. C. Eling, I. Fouxon and Y. Oz, The incompressible Navier-Stokes equations from membrane dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [SPIRES].

    Google Scholar 

  33. S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [SPIRES].

    Article  ADS  Google Scholar 

  34. I. Fouxon and Y. Oz, CFT hydrodynamics: symmetries, exact solutions and gravity, JHEP 03 (2009) 120 [arXiv:0812.1266] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. P.A. Horvathy and P.M. Zhang, Non-relativistic conformal symmetries in fluid mechanics, arXiv:0906.3594 [SPIRES].

  36. M. Hassaine and P.A. Horvathy, Field-dependent symmetries of a non-relativistic fluid model, Ann. Phys. 282 (2000) 218 [math-ph/9904022] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. M. Hassaine and P.A. Horvathy, Symmetries of fluid dynamics with polytropic exponent, Phys. Lett. A 279 (2001) 215 [hep-th/0009092] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. F. Correa, V. Jakubsky and M.S. Plyushchay, Aharonov-Bohm effect on AdS 2 and nonlinear supersymmetry of reflectionless Poschl-Teller system, Annals Phys. 324 (2009) 1078 [arXiv:0809.2854] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. P.D. Alvarez, J.L. Cortes, P.A. Horvathy and M.S. Plyushchay, Super-extended noncommutative Landau problem and conformal symmetry, JHEP 03 (2009) 034 [arXiv:0901.1021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Sakaguchi, Super galilean conformal algebra in AdS/CFT, arXiv:0905.0188 [SPIRES].

  41. A. Bagchi and I. Mandal, Supersymmetric extension of galilean conformal algebras, Phys. Rev. D 80 (2009) 086011 [arXiv:0905.0580] [SPIRES].

    Google Scholar 

  42. J.A. de Azcarraga, J. lukierski, Galilean superconformal symmetries, Phys. Lett. B 678 (2009) 411 [arXiv:0905.0141] [SPIRES].

    ADS  Google Scholar 

  43. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Mukhopadhyay.

Additional information

ArXiv ePrint: 0908.0797

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, A. A covariant form of the Navier-Stokes equation for the infinite dimensional Galilean conformal algebra. J. High Energ. Phys. 2010, 100 (2010). https://doi.org/10.1007/JHEP01(2010)100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2010)100

Keywords

Navigation