Abstract
If the reheating temperature at the end of inflation is low, of order 10 MeV, then dark matter produced through ultraviolet freeze-in has a large direct detection cross section. We study such a scenario in which dark matter is hadrophilic. This leads to dark matter-nucleon scattering cross sections of interest for near-future experiments for dark matter masses in the range of 100 keV–100 MeV. We explore how these predictions vary if reheating is non-instantaneous.
References
XENON collaboration, Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031 [arXiv:2007.08796] [INSPIRE].
LZ collaboration, First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment, arXiv:2207.03764 [INSPIRE].
PandaX-4T collaboration, Dark Matter Search Results from the PandaX-4T Commissioning Run, Phys. Rev. Lett. 127 (2021) 261802 [arXiv:2107.13438] [INSPIRE].
G. Ballesteros, M.A.G. Garcia and M. Pierre, How warm are non-thermal relics? Lyman-α bounds on out-of-equilibrium dark matter, JCAP 03 (2021) 101 [arXiv:2011.13458] [INSPIRE].
S. Knapen, T. Lin and K.M. Zurek, Light Dark Matter in Superfluid Helium: Detection with Multi-excitation Production, Phys. Rev. D 95 (2017) 056019 [arXiv:1611.06228] [INSPIRE].
R. Budnik, O. Chesnovsky, O. Slone and T. Volansky, Direct Detection of Light Dark Matter and Solar Neutrinos via Color Center Production in Crystals, Phys. Lett. B 782 (2018) 242 [arXiv:1705.03016] [INSPIRE].
S. Knapen, T. Lin and K.M. Zurek, Light Dark Matter: Models and Constraints, Phys. Rev. D 96 (2017) 115021 [arXiv:1709.07882] [INSPIRE].
S. Knapen, T. Lin, M. Pyle and K.M. Zurek, Detection of Light Dark Matter With Optical Phonons in Polar Materials, Phys. Lett. B 785 (2018) 386 [arXiv:1712.06598] [INSPIRE].
S. Griffin, S. Knapen, T. Lin and K.M. Zurek, Directional Detection of Light Dark Matter with Polar Materials, Phys. Rev. D 98 (2018) 115034 [arXiv:1807.10291] [INSPIRE].
N.A. Kurinsky, T.C. Yu, Y. Hochberg and B. Cabrera, Diamond Detectors for Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 99 (2019) 123005 [arXiv:1901.07569] [INSPIRE].
R. Essig, J. Pérez-Ríos, H. Ramani and O. Slone, Direct Detection of Spin-(In)dependent Nuclear Scattering of Sub-GeV Dark Matter Using Molecular Excitations, Phys. Rev. Research. 1 (2019) 033105 [arXiv:1907.07682] [INSPIRE].
T. Trickle, Z. Zhang, K.M. Zurek, K. Inzani and S.M. Griffin, Multi-Channel Direct Detection of Light Dark Matter: Theoretical Framework, JHEP 03 (2020) 036 [arXiv:1910.08092] [INSPIRE].
S.M. Griffin, K. Inzani, T. Trickle, Z. Zhang and K.M. Zurek, Multichannel direct detection of light dark matter: Target comparison, Phys. Rev. D 101 (2020) 055004 [arXiv:1910.10716] [INSPIRE].
B. Campbell-Deem, P. Cox, S. Knapen, T. Lin and T. Melia, Multiphonon excitations from dark matter scattering in crystals, Phys. Rev. D 101 (2020) 036006 [Erratum ibid. 102 (2020) 019904] [arXiv:1911.03482] [INSPIRE].
S.M. Griffin, Y. Hochberg, K. Inzani, N. Kurinsky, T. Lin and T. Chin, Silicon carbide detectors for sub-GeV dark matter, Phys. Rev. D 103 (2021) 075002 [arXiv:2008.08560] [INSPIRE].
A. Coskuner, T. Trickle, Z. Zhang and K.M. Zurek, Directional detectability of dark matter with single phonon excitations: Target comparison, Phys. Rev. D 105 (2022) 015010 [arXiv:2102.09567] [INSPIRE].
B. Campbell-Deem, S. Knapen, T. Lin and E. Villarama, Dark matter direct detection from the single phonon to the nuclear recoil regime, Phys. Rev. D 106 (2022) 036019 [arXiv:2205.02250] [INSPIRE].
A. Coskuner, D.M. Grabowska, S. Knapen and K.M. Zurek, Direct Detection of Bound States of Asymmetric Dark Matter, Phys. Rev. D 100 (2019) 035025 [arXiv:1812.07573] [INSPIRE].
J. Smirnov and J.F. Beacom, New Freezeout Mechanism for Strongly Interacting Dark Matter, Phys. Rev. Lett. 125 (2020) 131301 [arXiv:2002.04038] [INSPIRE].
G. Elor, R. McGehee and A. Pierce, Maximizing Direct Detection with HYPER Dark Matter, arXiv:2112.03920 [INSPIRE].
R. An, V. Gluscevic, E. Calabrese and J.C. Hill, What does cosmology tell us about the mass of thermal-relic dark matter?, JCAP 07 (2022) 002 [arXiv:2202.03515] [INSPIRE].
L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].
R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].
SENSEI collaboration, SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD, Phys. Rev. Lett. 125 (2020) 171802 [arXiv:2004.11378] [INSPIRE].
F. Elahi, C. Kolda and J. Unwin, UltraViolet Freeze-in, JHEP 03 (2015) 048 [arXiv:1410.6157] [INSPIRE].
A. Berlin, N. Blinov, G. Krnjaic, P. Schuster and N. Toro, Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons, and Other New Physics with LDMX, Phys. Rev. D 99 (2019) 075001 [arXiv:1807.01730] [INSPIRE].
S. Dimopoulos and L.J. Hall, Baryogenesis at the MeV Era, Phys. Lett. B 196 (1987) 135 [INSPIRE].
J.M. Cline and S. Raby, Gravitino induced baryogenesis: A Problem made a virtue, Phys. Rev. D 43 (1991) 1781 [INSPIRE].
K. Aitken, D. McKeen, T. Neder and A.E. Nelson, Baryogenesis from Oscillations of Charmed or Beautiful Baryons, Phys. Rev. D 96 (2017) 075009 [arXiv:1708.01259] [INSPIRE].
G. Elor, M. Escudero and A. Nelson, Baryogenesis and Dark Matter from B Mesons, Phys. Rev. D 99 (2019) 035031 [arXiv:1810.00880] [INSPIRE].
G. Elor and R. McGehee, Making the Universe at 20 MeV, Phys. Rev. D 103 (2021) 035005 [arXiv:2011.06115] [INSPIRE].
F. Elahi, G. Elor and R. McGehee, Charged B mesogenesis, Phys. Rev. D 105 (2022) 055024 [arXiv:2109.09751] [INSPIRE].
J. Jaeckel and W. Yin, High energy sphalerons for baryogenesis at low temperatures, Phys. Rev. D 107 (2023) 015001 [arXiv:2206.06376] [INSPIRE].
ATLAS collaboration, Search for heavy charged long-lived particles in the ATLAS detector in 36.1 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 99 (2019) 092007 [arXiv:1902.01636] [INSPIRE].
J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1.
H. Georgi and L. Randall, Flavor Conserving CP-violation in Invisible Axion Models, Nucl. Phys. B 276 (1986) 241 [INSPIRE].
A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].
S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].
M. Kaplinghat, S. Tulin and H.-B. Yu, Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].
BaBar collaboration, Search for \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) and invisible quarkonium decays, Phys. Rev. D 87 (2013) 112005 [arXiv:1303.7465] [INSPIRE].
NA62 collaboration, Measurement of the very rare \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) decay, JHEP 06 (2021) 093 [arXiv:2103.15389] [INSPIRE].
J. Charles et al., New physics in B meson mixing: future sensitivity and limitations, Phys. Rev. D 102 (2020) 056023 [arXiv:2006.04824] [INSPIRE].
L. Kofman, Reheating and preheating after inflation, in 3rd RESCEU International Symposium on Particle Cosmology, Tokyo, Japan (1997), pg. 1 [hep-ph/9802285] [INSPIRE].
S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004) 043506 [astro-ph/0403291] [INSPIRE].
P.F. de Salas, M. Lattanzi, G. Mangano, G. Miele, S. Pastor and O. Pisanti, Bounds on very low reheating scenarios after Planck, Phys. Rev. D 92 (2015) 123534 [arXiv:1511.00672] [INSPIRE].
E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1
Y. Hochberg, E. Kuflik, R. Mcgehee, H. Murayama and K. Schutz, Strongly interacting massive particles through the axion portal, Phys. Rev. D 98 (2018) 115031 [arXiv:1806.10139] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].
E. Frangipane, S. Gori and B. Shakya, Dark matter freeze-in with a heavy mediator: beyond the EFT approach, JHEP 09 (2022) 083 [arXiv:2110.10711] [INSPIRE].
K. Harigaya, M. Kawasaki, K. Mukaida and M. Yamada, Dark Matter Production in Late Time Reheating, Phys. Rev. D 89 (2014) 083532 [arXiv:1402.2846] [INSPIRE].
K. Harigaya, K. Mukaida and M. Yamada, Dark Matter Production during the Thermalization Era, JHEP 07 (2019) 059 [arXiv:1901.11027] [INSPIRE].
N. Bernal, F. Elahi, C. Maldonado and J. Unwin, Ultraviolet Freeze-in and Non-Standard Cosmologies, JCAP 11 (2019) 026 [arXiv:1909.07992] [INSPIRE].
M.A.G. Garcia, Y. Mambrini, K.A. Olive and M. Peloso, Enhancement of the Dark Matter Abundance Before Reheating: Applications to Gravitino Dark Matter, Phys. Rev. D 96 (2017) 103510 [arXiv:1709.01549] [INSPIRE].
HotQCD collaboration, Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795 (2019) 15 [arXiv:1812.08235] [INSPIRE].
S.A. Hertel, A. Biekert, J. Lin, V. Velan and D.N. McKinsey, Direct detection of sub-GeV dark matter using a superfluid 4He target, Phys. Rev. D 100 (2019) 092007 [arXiv:1810.06283] [INSPIRE].
B. von Krosigk et al., DELight: a Direct search Experiment for Light dark matter with superfluid helium, in 14th International Workshop on the Identification of Dark Matter 2022 2022 [arXiv:2209.10950] [INSPIRE].
N. Bernal, J. Rubio and H. Veermäe, UV Freeze-in in Starobinsky Inflation, JCAP 10 (2020) 021 [arXiv:2006.02442] [INSPIRE].
N. Bernal, J. Rubio and H. Veermäe, Boosting Ultraviolet Freeze-in in NO Models, JCAP 06 (2020) 047 [arXiv:2004.13706] [INSPIRE].
P.N. Bhattiprolu, S.P. Martin and J.D. Wells, Zstats v2.0 package, https://github.com/prudhvibhattiprolu/Zstats/ (2022).
P.N. Bhattiprolu, S.P. Martin and J.D. Wells, Statistical significances and projections for proton decay experiments, arXiv:2210.07735 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2210.15653
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Bhattiprolu, P.N., Elor, G., McGehee, R. et al. Freezing-in hadrophilic dark matter at low reheating temperatures. J. High Energ. Phys. 2023, 128 (2023). https://doi.org/10.1007/JHEP01(2023)128
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2023)128
Keywords
- Early Universe Particle Physics
- Models for Dark Matter
- Particle Nature of Dark Matter