Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Freezing-in hadrophilic dark matter at low reheating temperatures
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Dark matter production during the thermalization era

11 July 2019

Keisuke Harigaya, Kyohei Mukaida & Masaki Yamada

Freezing-in a hot bath: resonances, medium effects and phase transitions

14 February 2022

Torsten Bringmann, Saniya Heeba, … Kristian Vangsnes

Dark matter freeze out during an early cosmological period of QCD confinement

27 July 2020

Dillon Berger, Seyda Ipek, … Michael Waterbury

Supercool composite Dark Matter beyond 100 TeV

13 July 2022

Iason Baldes, Yann Gouttenoire, … Géraldine Servant

Forbidden frozen-in dark matter

27 November 2019

L. Darmé, A. Hryczuk, … L. Roszkowski

Light(ly)-coupled dark matter in the keV range: freeze-in and constraints

15 March 2021

Jae Hyeok Chang, Rouven Essig & Annika Reinert

Reheating and dark matter freeze-in in the Higgs-R2 inflation model

18 May 2022

Shuntaro Aoki, Hyun Min Lee, … Kimiko Yamashita

Dark Matter from freeze-in and its inhomogeneities

07 March 2023

Alessandro Strumia

Super-cool Dark Matter

29 August 2018

Thomas Hambye, Alessandro Strumia & Daniele Teresi

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 23 January 2023

Freezing-in hadrophilic dark matter at low reheating temperatures

  • Prudhvi N. Bhattiprolu  ORCID: orcid.org/0000-0003-1819-17331,
  • Gilly Elor2,
  • Robert McGehee  ORCID: orcid.org/0000-0002-9265-04941 &
  • …
  • Aaron Pierce1 

Journal of High Energy Physics volume 2023, Article number: 128 (2023) Cite this article

  • 37 Accesses

  • 3 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

If the reheating temperature at the end of inflation is low, of order 10 MeV, then dark matter produced through ultraviolet freeze-in has a large direct detection cross section. We study such a scenario in which dark matter is hadrophilic. This leads to dark matter-nucleon scattering cross sections of interest for near-future experiments for dark matter masses in the range of 100 keV–100 MeV. We explore how these predictions vary if reheating is non-instantaneous.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. XENON collaboration, Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031 [arXiv:2007.08796] [INSPIRE].

  2. LZ collaboration, First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment, arXiv:2207.03764 [INSPIRE].

  3. PandaX-4T collaboration, Dark Matter Search Results from the PandaX-4T Commissioning Run, Phys. Rev. Lett. 127 (2021) 261802 [arXiv:2107.13438] [INSPIRE].

  4. G. Ballesteros, M.A.G. Garcia and M. Pierre, How warm are non-thermal relics? Lyman-α bounds on out-of-equilibrium dark matter, JCAP 03 (2021) 101 [arXiv:2011.13458] [INSPIRE].

  5. S. Knapen, T. Lin and K.M. Zurek, Light Dark Matter in Superfluid Helium: Detection with Multi-excitation Production, Phys. Rev. D 95 (2017) 056019 [arXiv:1611.06228] [INSPIRE].

    Article  ADS  Google Scholar 

  6. R. Budnik, O. Chesnovsky, O. Slone and T. Volansky, Direct Detection of Light Dark Matter and Solar Neutrinos via Color Center Production in Crystals, Phys. Lett. B 782 (2018) 242 [arXiv:1705.03016] [INSPIRE].

    Article  ADS  Google Scholar 

  7. S. Knapen, T. Lin and K.M. Zurek, Light Dark Matter: Models and Constraints, Phys. Rev. D 96 (2017) 115021 [arXiv:1709.07882] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Knapen, T. Lin, M. Pyle and K.M. Zurek, Detection of Light Dark Matter With Optical Phonons in Polar Materials, Phys. Lett. B 785 (2018) 386 [arXiv:1712.06598] [INSPIRE].

    Article  ADS  Google Scholar 

  9. S. Griffin, S. Knapen, T. Lin and K.M. Zurek, Directional Detection of Light Dark Matter with Polar Materials, Phys. Rev. D 98 (2018) 115034 [arXiv:1807.10291] [INSPIRE].

    Article  ADS  Google Scholar 

  10. N.A. Kurinsky, T.C. Yu, Y. Hochberg and B. Cabrera, Diamond Detectors for Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 99 (2019) 123005 [arXiv:1901.07569] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Essig, J. Pérez-Ríos, H. Ramani and O. Slone, Direct Detection of Spin-(In)dependent Nuclear Scattering of Sub-GeV Dark Matter Using Molecular Excitations, Phys. Rev. Research. 1 (2019) 033105 [arXiv:1907.07682] [INSPIRE].

    Article  ADS  Google Scholar 

  12. T. Trickle, Z. Zhang, K.M. Zurek, K. Inzani and S.M. Griffin, Multi-Channel Direct Detection of Light Dark Matter: Theoretical Framework, JHEP 03 (2020) 036 [arXiv:1910.08092] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S.M. Griffin, K. Inzani, T. Trickle, Z. Zhang and K.M. Zurek, Multichannel direct detection of light dark matter: Target comparison, Phys. Rev. D 101 (2020) 055004 [arXiv:1910.10716] [INSPIRE].

    Article  ADS  Google Scholar 

  14. B. Campbell-Deem, P. Cox, S. Knapen, T. Lin and T. Melia, Multiphonon excitations from dark matter scattering in crystals, Phys. Rev. D 101 (2020) 036006 [Erratum ibid. 102 (2020) 019904] [arXiv:1911.03482] [INSPIRE].

  15. S.M. Griffin, Y. Hochberg, K. Inzani, N. Kurinsky, T. Lin and T. Chin, Silicon carbide detectors for sub-GeV dark matter, Phys. Rev. D 103 (2021) 075002 [arXiv:2008.08560] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Coskuner, T. Trickle, Z. Zhang and K.M. Zurek, Directional detectability of dark matter with single phonon excitations: Target comparison, Phys. Rev. D 105 (2022) 015010 [arXiv:2102.09567] [INSPIRE].

    Article  ADS  Google Scholar 

  17. B. Campbell-Deem, S. Knapen, T. Lin and E. Villarama, Dark matter direct detection from the single phonon to the nuclear recoil regime, Phys. Rev. D 106 (2022) 036019 [arXiv:2205.02250] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Coskuner, D.M. Grabowska, S. Knapen and K.M. Zurek, Direct Detection of Bound States of Asymmetric Dark Matter, Phys. Rev. D 100 (2019) 035025 [arXiv:1812.07573] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J. Smirnov and J.F. Beacom, New Freezeout Mechanism for Strongly Interacting Dark Matter, Phys. Rev. Lett. 125 (2020) 131301 [arXiv:2002.04038] [INSPIRE].

    Article  ADS  Google Scholar 

  20. G. Elor, R. McGehee and A. Pierce, Maximizing Direct Detection with HYPER Dark Matter, arXiv:2112.03920 [INSPIRE].

  21. R. An, V. Gluscevic, E. Calabrese and J.C. Hill, What does cosmology tell us about the mass of thermal-relic dark matter?, JCAP 07 (2022) 002 [arXiv:2202.03515] [INSPIRE].

    Article  ADS  Google Scholar 

  22. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].

    Article  ADS  Google Scholar 

  24. SENSEI collaboration, SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD, Phys. Rev. Lett. 125 (2020) 171802 [arXiv:2004.11378] [INSPIRE].

  25. F. Elahi, C. Kolda and J. Unwin, UltraViolet Freeze-in, JHEP 03 (2015) 048 [arXiv:1410.6157] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Berlin, N. Blinov, G. Krnjaic, P. Schuster and N. Toro, Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons, and Other New Physics with LDMX, Phys. Rev. D 99 (2019) 075001 [arXiv:1807.01730] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Dimopoulos and L.J. Hall, Baryogenesis at the MeV Era, Phys. Lett. B 196 (1987) 135 [INSPIRE].

  28. J.M. Cline and S. Raby, Gravitino induced baryogenesis: A Problem made a virtue, Phys. Rev. D 43 (1991) 1781 [INSPIRE].

  29. K. Aitken, D. McKeen, T. Neder and A.E. Nelson, Baryogenesis from Oscillations of Charmed or Beautiful Baryons, Phys. Rev. D 96 (2017) 075009 [arXiv:1708.01259] [INSPIRE].

    Article  ADS  Google Scholar 

  30. G. Elor, M. Escudero and A. Nelson, Baryogenesis and Dark Matter from B Mesons, Phys. Rev. D 99 (2019) 035031 [arXiv:1810.00880] [INSPIRE].

    Article  ADS  Google Scholar 

  31. G. Elor and R. McGehee, Making the Universe at 20 MeV, Phys. Rev. D 103 (2021) 035005 [arXiv:2011.06115] [INSPIRE].

    Article  ADS  Google Scholar 

  32. F. Elahi, G. Elor and R. McGehee, Charged B mesogenesis, Phys. Rev. D 105 (2022) 055024 [arXiv:2109.09751] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Jaeckel and W. Yin, High energy sphalerons for baryogenesis at low temperatures, Phys. Rev. D 107 (2023) 015001 [arXiv:2206.06376] [INSPIRE].

    Article  ADS  Google Scholar 

  34. ATLAS collaboration, Search for heavy charged long-lived particles in the ATLAS detector in 36.1 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 99 (2019) 092007 [arXiv:1902.01636] [INSPIRE].

  35. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1.

  36. H. Georgi and L. Randall, Flavor Conserving CP-violation in Invisible Axion Models, Nucl. Phys. B 276 (1986) 241 [INSPIRE].

  37. A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].

  38. S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Kaplinghat, S. Tulin and H.-B. Yu, Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].

    Article  ADS  Google Scholar 

  40. BaBar collaboration, Search for \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) and invisible quarkonium decays, Phys. Rev. D 87 (2013) 112005 [arXiv:1303.7465] [INSPIRE].

  41. NA62 collaboration, Measurement of the very rare \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) decay, JHEP 06 (2021) 093 [arXiv:2103.15389] [INSPIRE].

  42. J. Charles et al., New physics in B meson mixing: future sensitivity and limitations, Phys. Rev. D 102 (2020) 056023 [arXiv:2006.04824] [INSPIRE].

    Article  ADS  Google Scholar 

  43. L. Kofman, Reheating and preheating after inflation, in 3rd RESCEU International Symposium on Particle Cosmology, Tokyo, Japan (1997), pg. 1 [hep-ph/9802285] [INSPIRE].

  44. S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004) 043506 [astro-ph/0403291] [INSPIRE].

    Article  ADS  Google Scholar 

  45. P.F. de Salas, M. Lattanzi, G. Mangano, G. Miele, S. Pastor and O. Pisanti, Bounds on very low reheating scenarios after Planck, Phys. Rev. D 92 (2015) 123534 [arXiv:1511.00672] [INSPIRE].

    Article  ADS  Google Scholar 

  46. E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1

  47. Y. Hochberg, E. Kuflik, R. Mcgehee, H. Murayama and K. Schutz, Strongly interacting massive particles through the axion portal, Phys. Rev. D 98 (2018) 115031 [arXiv:1806.10139] [INSPIRE].

    Article  ADS  Google Scholar 

  48. Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].

  49. E. Frangipane, S. Gori and B. Shakya, Dark matter freeze-in with a heavy mediator: beyond the EFT approach, JHEP 09 (2022) 083 [arXiv:2110.10711] [INSPIRE].

    Article  ADS  Google Scholar 

  50. K. Harigaya, M. Kawasaki, K. Mukaida and M. Yamada, Dark Matter Production in Late Time Reheating, Phys. Rev. D 89 (2014) 083532 [arXiv:1402.2846] [INSPIRE].

    Article  ADS  Google Scholar 

  51. K. Harigaya, K. Mukaida and M. Yamada, Dark Matter Production during the Thermalization Era, JHEP 07 (2019) 059 [arXiv:1901.11027] [INSPIRE].

    Article  ADS  Google Scholar 

  52. N. Bernal, F. Elahi, C. Maldonado and J. Unwin, Ultraviolet Freeze-in and Non-Standard Cosmologies, JCAP 11 (2019) 026 [arXiv:1909.07992] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  53. M.A.G. Garcia, Y. Mambrini, K.A. Olive and M. Peloso, Enhancement of the Dark Matter Abundance Before Reheating: Applications to Gravitino Dark Matter, Phys. Rev. D 96 (2017) 103510 [arXiv:1709.01549] [INSPIRE].

    Article  ADS  Google Scholar 

  54. HotQCD collaboration, Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795 (2019) 15 [arXiv:1812.08235] [INSPIRE].

  55. S.A. Hertel, A. Biekert, J. Lin, V. Velan and D.N. McKinsey, Direct detection of sub-GeV dark matter using a superfluid 4He target, Phys. Rev. D 100 (2019) 092007 [arXiv:1810.06283] [INSPIRE].

    Article  ADS  Google Scholar 

  56. B. von Krosigk et al., DELight: a Direct search Experiment for Light dark matter with superfluid helium, in 14th International Workshop on the Identification of Dark Matter 2022 2022 [arXiv:2209.10950] [INSPIRE].

  57. N. Bernal, J. Rubio and H. Veermäe, UV Freeze-in in Starobinsky Inflation, JCAP 10 (2020) 021 [arXiv:2006.02442] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. N. Bernal, J. Rubio and H. Veermäe, Boosting Ultraviolet Freeze-in in NO Models, JCAP 06 (2020) 047 [arXiv:2004.13706] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  59. P.N. Bhattiprolu, S.P. Martin and J.D. Wells, Zstats v2.0 package, https://github.com/prudhvibhattiprolu/Zstats/ (2022).

  60. P.N. Bhattiprolu, S.P. Martin and J.D. Wells, Statistical significances and projections for proton decay experiments, arXiv:2210.07735 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Leinweber Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA

    Prudhvi N. Bhattiprolu, Robert McGehee & Aaron Pierce

  2. PRISMA+ Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099, Mainz, Germany

    Gilly Elor

Authors
  1. Prudhvi N. Bhattiprolu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Gilly Elor
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Robert McGehee
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Aaron Pierce
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Robert McGehee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2210.15653

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhattiprolu, P.N., Elor, G., McGehee, R. et al. Freezing-in hadrophilic dark matter at low reheating temperatures. J. High Energ. Phys. 2023, 128 (2023). https://doi.org/10.1007/JHEP01(2023)128

Download citation

  • Received: 15 November 2022

  • Accepted: 09 January 2023

  • Published: 23 January 2023

  • DOI: https://doi.org/10.1007/JHEP01(2023)128

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Early Universe Particle Physics
  • Models for Dark Matter
  • Particle Nature of Dark Matter
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.