Advertisement

Neutrino scattering and B anomalies from hidden sector portals

  • Alakabha Datta
  • Bhaskar Dutta
  • Shu LiaoEmail author
  • Danny Marfatia
  • Louis E. Strigari
Open Access
Regular Article - Theoretical Physics
  • 9 Downloads

Abstract

We examine current constraints on and the future sensitivity to the strength of couplings between quarks and neutrinos in the presence of a form factor generated from loop effects of hidden sector particles that interact with quarks via new interactions. We consider models associated with either vector or scalar interactions of quarks and leptons generated by hidden sector dynamics. We study constraints on these models using data from coherent elastic neutrino-nucleus scattering and solar neutrino experiments and demonstrate how these new interactions may be discovered by utilizing the recoil spectra. We show that our framework can be naturally extended to explain the lepton universality violating neutral current B decay anomalies, and that in a model framework the constraints from neutrino scattering can have implications for these anomalies.

Keywords

Beyond Standard Model Neutrino Physics Kaon Physics Heavy Quark Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    COHERENT collaboration, Observation of coherent elastic neutrino-nucleus scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
  2. [2]
    Borexino collaboration, First simultaneous precision spectroscopy of pp, 7 Be and pep solar neutrinos with Borexino phase-II, arXiv:1707.09279 [INSPIRE].
  3. [3]
    A. Datta, J. Kumar, J. Liao and D. Marfatia, New light mediators for the R K and R Kpuzzles, Phys. Rev. D 97 (2018) 115038 [arXiv:1705.08423] [INSPIRE].
  4. [4]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].
  5. [5]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Elor, H. Liu, T.R. Slatyer and Y. Soreq, Complementarity for dark sector bound states, Phys. Rev. D 98 (2018) 036015 [arXiv:1801.07723] [INSPIRE].
  8. [8]
    A. Datta, M. Duraisamy and D. Ghosh, Explaining the BK μ + μ data with scalar interactions, Phys. Rev. D 89 (2014) 071501 [arXiv:1310.1937] [INSPIRE].
  9. [9]
    D.G. Cerdeño, M. Fairbairn, T. Jubb, P.A.N. Machado, A.C. Vincent and C. Boehm, Physics from solar neutrinos in dark matter direct detection experiments, JHEP 05 (2016) 118 [Erratum ibid. 09 (2016) 048] [arXiv:1604.01025] [INSPIRE].
  10. [10]
    M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  12. [12]
    Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. 1, Phys. Rev. 122 (1961) 345 [INSPIRE].
  13. [13]
    D. Aristizabal Sierra, B. Dutta and L. Strigari, in preparation (2019).Google Scholar
  14. [14]
    CONNIE collaboration, The CONNIE experiment, J. Phys. Conf. Ser. 761 (2016) 012057 [arXiv:1608.01565] [INSPIRE].
  15. [15]
    TEXONO collaboration, Neutrino and dark matter physics with sub-KeV Germanium detectors, J. Phys. Conf. Ser. 718 (2016) 062036 [INSPIRE].
  16. [16]
    MINER collaboration, Background studies for the MINER coherent neutrino scattering reactor experiment, Nucl. Instrum. Meth. A 853 (2017) 53 [arXiv:1609.02066] [INSPIRE].
  17. [17]
    COHERENT collaboration, COHERENT 2018 at the spallation neutron source, arXiv:1803.09183 [INSPIRE].
  18. [18]
    Daya Bay collaboration, Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay, Chin. Phys. C 41 (2017) 013002 [arXiv:1607.05378] [INSPIRE].
  19. [19]
    Super-Kamiokande collaboration, Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].
  20. [20]
    SNO collaboration, Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [arXiv:1109.0763] [INSPIRE].
  21. [21]
    W.C. Haxton, R.G. Hamish Robertson and A.M. Serenelli, Solar neutrinos: status and prospects, Ann. Rev. Astron. Astrophys. 51 (2013) 21 [arXiv:1208.5723] [INSPIRE].
  22. [22]
    B. Bhattacharya, A. Datta, D. London and S. Shivashankara, Simultaneous explanation of the R K and R(D (∗)) puzzles, Phys. Lett. B 742 (2015) 370 [arXiv:1412.7164] [INSPIRE].
  23. [23]
    A. Greljo, G. Isidori and D. Marzocca, On the breaking of lepton flavor universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Crivellin, D. Müller and T. Ota, Simultaneous explanation of R(D (∗)) and b + μ : the last scalar leptoquarks standing, JHEP 09 (2017) 040 [arXiv:1703.09226] [INSPIRE].
  25. [25]
    LHCb collaboration, Test of lepton universality with B 0K ∗0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  26. [26]
    G. Hiller and F. Krüger, More model-independent analysis of bs processes, Phys. Rev. D 69 (2004) 074020 [hep-ph/0310219] [INSPIRE].
  27. [27]
    G. Hiller and M. Schmaltz, R K and future bsℓℓ physics beyond the Standard Model opportunities, Phys. Rev. D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].
  28. [28]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  29. [29]
    M. Bordone, G. Isidori and A. Pattori, On the Standard Model predictions for R K and R K∗ , Eur. Phys. J. C 76 (2016) 440 [arXiv:1605.07633] [INSPIRE].
  30. [30]
    A. Datta, J. Liao and D. Marfatia, A light Z for the R K puzzle and nonstandard neutrino interactions, Phys. Lett. B 768 (2017) 265 [arXiv:1702.01099] [INSPIRE].
  31. [31]
    A.K. Alok, B. Bhattacharya, A. Datta, D. Kumar, J. Kumar and D. London, New physics in b + μ after the measurement of R K∗, Phys. Rev. D 96 (2017) 095009 [arXiv:1704.07397] [INSPIRE].
  32. [32]
    W. Altmannshofer et al., Light resonances and the low-q 2 bin of R K∗ , JHEP 03 (2018) 188 [arXiv:1711.07494] [INSPIRE].
  33. [33]
    C.S. Lam, A 2-3 symmetry in neutrino oscillations, Phys. Lett. B 507 (2001) 214 [hep-ph/0104116] [INSPIRE].
  34. [34]
    T. Kitabayashi and M. Yasue, S 2L permutation symmetry for left-handed μ and τ families and neutrino oscillations in an SU(3)L × SU(1)N gauge model, Phys. Rev. D 67 (2003) 015006 [hep-ph/0209294] [INSPIRE].
  35. [35]
    W. Grimus and L. Lavoura, A discrete symmetry group for maximal atmospheric neutrino mixing, Phys. Lett. B 572 (2003) 189 [hep-ph/0305046] [INSPIRE].
  36. [36]
    Y. Koide, Universal texture of quark and lepton mass matrices with an extended flavor 2 ↔ 3 symmetry, Phys. Rev. D 69 (2004) 093001 [hep-ph/0312207] [INSPIRE].
  37. [37]
    A. Datta and P.J. O’Donnell, The 2-3 symmetry: flavor changing b, τ decays and neutrino mixing, Phys. Rev. D 72 (2005) 113002 [hep-ph/0508314] [INSPIRE].
  38. [38]
    B. Bhattacharya, A. Datta, J.-P. Guévin, D. London and R. Watanabe, Simultaneous explanation of the R K and \( {R}_{D^{\left(\ast \right)}} \) puzzles: a model analysis, JHEP 01 (2017) 015 [arXiv:1609.09078] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of MississippiOxfordU.S.A.
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaIrvineU.S.A.
  3. 3.Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  4. 4.Department of Physics and AstronomyUniversity of Hawaii-ManoaHonoluluU.S.A.

Personalised recommendations