Advertisement

E7(7) exceptional field theory in superspace

  • Daniel ButterEmail author
  • Henning Samtleben
  • Ergin Sezgin
Open Access
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract

We formulate the locally supersymmetric E7(7) exceptional field theory in a (4 + 56|32) dimensional superspace, corresponding to a 4D N = 8 “external” superspace augmented with an “internal” 56-dimensional space. This entails the unification of external diffeomorphisms and local supersymmetry transformations into superdiffeomorphisms. The solutions to the superspace Bianchi identities lead to on-shell duality equations for the p-form field strengths for p ≤ 4. The reduction to component fields provides a complete description of the on-shell supersymmetric theory. As an application of our results, we perform a generalized Scherk-Schwarz reduction and obtain the superspace formulation of maximal gauged supergravity in four dimensions parametrized by an embedding tensor.

Keywords

M-Theory Supergravity Models Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].
  2. [2]
    B. Julia, Group disintegrations, in Superspace and supergravity, S.W. Hawking and M. Roček eds., Cambridge University Press, Cambridge U.K. (1981).Google Scholar
  3. [3]
    C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].
  4. [4]
    B. de Wit and H. Nicolai, Hidden symmetry in d = 11 supergravity, Phys. Lett. 155B (1985) 47 [INSPIRE].
  5. [5]
    B. de Wit and H. Nicolai, d = 11 supergravity with local SU(8) invariance, Nucl. Phys. B 274 (1986) 363 [INSPIRE].
  6. [6]
    M. Duff, E 8 × SO(16) symmetry of d = 11 supergravity?, in Quantum field theory and quantum statistics. Volume 2, A. Batalin et al. eds., Adam Hilger, Bristol U.K. (1987).Google Scholar
  7. [7]
    O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].
  8. [8]
    O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant form of M-theory and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].
  9. [9]
    O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
  10. [10]
    O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
  11. [11]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The Local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × ℝ+ generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].
  14. [14]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry II: E d(d) × ℝ+ and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].
  15. [15]
    G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, Extended geometry and gauged maximal supergravity, JHEP 06 (2013) 046 [arXiv:1302.5419] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].
  17. [17]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    O. Hohm and H. Samtleben, Consistent Kaluza-Klein truncations via exceptional field theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    G. Bossard and A. Kleinschmidt, Loops in exceptional field theory, JHEP 01 (2016) 164 [arXiv:1510.07859] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    O. Hohm and B. Zwiebach, T-duality constraints on higher derivatives revisited, JHEP 04 (2016) 101 [arXiv:1510.00005] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  22. [22]
    H. Godazgar et al., Supersymmetric E 7(7) exceptional field theory, JHEP 09 (2014) 044 [arXiv:1406.3235] [INSPIRE].
  23. [23]
    A.S. Arvanitakis and C.D.A. Blair, The exceptional σ-model, JHEP 04 (2018) 064 [arXiv:1802.00442] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    L. Brink and P.S. Howe, The N = 8 supergravity in superspace, Phys. Lett. 88B (1979) 268 [INSPIRE].
  25. [25]
    P.S. Howe, Supergravity in superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].
  26. [26]
    I. Bandos and T. Ortın, Tensor gauge fields of N = 8 supergravity, Phys. Rev. D 91 (2015) 085031 [arXiv:1502.00649] [INSPIRE].
  27. [27]
    P. Howe and J. Palmkvist, Forms and algebras in (half-)maximal supergravity theories, JHEP 05 (2015) 032 [arXiv:1503.00015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    P.S. Howe and U. Lindström, Higher order invariants in extended supergravity, Nucl. Phys. B 181 (1981) 487 [INSPIRE].
  29. [29]
    I. Bandos, On section conditions of E 7(+7) exceptional field theory and superparticle in \( \mathcal{N}=8 \) central charge superspace, JHEP 01 (2016) 132 [arXiv:1512.02287] [INSPIRE].
  30. [30]
    M. Hatsuda, K. Kamimura and W. Siegel, Superspace with manifest T-duality from type-II superstring, JHEP 06 (2014) 039 [arXiv:1403.3887] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Poláček and W. Siegel, T-duality off shell in 3D type II superspace, JHEP 06 (2014) 107 [arXiv:1403.6904] [INSPIRE].
  32. [32]
    I. Bandos, Superstring in doubled superspace, Phys. Lett. B 751 (2015) 408 [arXiv:1507.07779] [INSPIRE].
  33. [33]
    M. Cederwall, Double supergeometry, JHEP 06 (2016) 155 [arXiv:1603.04684] [INSPIRE].
  34. [34]
    B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].
  35. [35]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].
  36. [36]
    H. Godazgar, M. Godazgar and H. Nicolai, Generalised geometry from the ground up, JHEP 02 (2014) 075 [arXiv:1307.8295] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    H. Godazgar, M. Godazgar and H. Nicolai, Einstein-Cartan calculus for exceptional geometry, JHEP 06 (2014) 021 [arXiv:1401.5984] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    O. Hohm and H. Samtleben, Leibniz-Chern-Simons Theory and Phases of Exceptional Field Theory, arXiv:1805.03220 [INSPIRE].
  39. [39]
    J. Wess and J.A. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).Google Scholar
  40. [40]
    K. Peeters, Introducing Cadabra: a symbolic computer algebra system for field theory problems, hep-th/0701238 [INSPIRE].
  41. [41]
    K. Peeters, A field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [cs/0608005] [INSPIRE].
  42. [42]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged supergravities, tensor hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    A. Le Diffon and H. Samtleben, Supergravities without an action: gauging the trombone, Nucl. Phys. B 811 (2009) 1 [arXiv:0809.5180] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.George P. and Cynthia W. Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  2. 2.Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de PhysiqueLyonFrance

Personalised recommendations