Skip to main content

Holographic calculation of the magneto-transport coefficients in Dirac semimetals

A preprint version of the article is available at arXiv.


Based on the gauge/gravity correspondence we have calculated the thermoelectric kinetic and transport characteristics of the strongly interacting materials in the presence of perpendicular magnetic field. The 3+1 dimensional system with Dirac-like spectrum is considered as a strongly interacting one if it is close to the particle-hole symmetry point. Transport in such system has been modeled by the two interacting vector fields. In the holographic theory the momentum relaxation is caused by axion field and leads to finite values of the direct current transport coefficients. We have calculated conductivity tensor in the presence of mutually perpendicular electric and magnetic fields and temperature gradient. The geometry differs from that in which magnetic field lies in the same plane as an electric one and temperature gradient.


  1. [1]

    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  2. [2]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  4. [4]

    J. Zaanen et al., Holographic duality in condensed matter physics, Cambridge University Press, Camrbidge U.K. (2015).

    Book  Google Scholar 

  5. [5]

    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    E. Gubankova, M. Cubrovic and J. Zaanen, Exciton-driven quantum phase transitions in holography, Phys. Rev. D 92 (2015) 086004 [arXiv:1412.2373] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    M. Blake and D. Tong, Universal resistivity from holographic massive gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    M. Blake, D. Tong and D. Vegh, Holographic lattices give the graviton an effective mass, Phys. Rev. Lett. 112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP 06 (2014) 007 [arXiv:1401.5077] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    A. Amoretti et al., Thermo-electric transport in gauge/gravity models with momentum dissipation, JHEP 09 (2014) 160 [arXiv:1406.4134] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    A. Amoretti et al., Analytic dc thermoelectric conductivities in holography with massive gravitons, Phys. Rev. D 91 (2015) 025002 [arXiv:1407.0306] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    A. Donos and J.P. Gauntlett, Navier-Stokes equations on black hole horizons and DC thermoelectric conductivity, Phys. Rev. D 92 (2015) 121901 [arXiv:1506.01360] [INSPIRE].

    ADS  MATH  Google Scholar 

  18. [18]

    E. Banks, A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities and Stokes flows on black hole horizons, JHEP 10 (2015) 103 [arXiv:1507.00234] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, DC conductivity of magnetised holographic matter, JHEP 01 (2016) 113 [arXiv:1511.00713] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, DC conductivity and higher derivative gravity, Class. Quant. Grav. 34 (2017) 135015 [arXiv:1701.01389] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    L. Cheng, X.-H. Ge and Z.-Y. Sun, Thermoelectric DC conductivities with momentum dissipation from higher derivative gravity, JHEP 04 (2015) 135 [arXiv:1411.5452] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    M. Blake, A. Donos and N. Lohitsiri, Magnetothermoelectric response from holography, JHEP 08 (2015) 124 [arXiv:1502.03789] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    M. Blake and A. Donos, Quantum critical transport and the Hall angle, Phys. Rev. Lett. 114 (2015) 021601 [arXiv:1406.1659] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    A. Amoretti and D. Musso, Magneto-transport from momentum dissipating holography, JHEP 09 (2015) 094 [arXiv:1502.02631] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    A. Lucas and S. Sachdev, Memory matrix theory of magnetotransport in strange metals, Phys. Rev. B 91 (2015) 195122 [arXiv:1502.04704] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Thermoelectric conductivities at finite magnetic field and the Nernst effect, JHEP 07 (2015) 027 [arXiv:1502.05386] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    M.S. Foster and I.L. Aleiner, Slow imbalance relaxation and thermoelectric transport in graphene, Phys. Rev. B 79 (2009) 085415.

    ADS  Article  Google Scholar 

  28. [28]

    Y. Seo, G. Song, P. Kim, S. Sachdev and S.-J. Sin, Holography of the Dirac Fluid in Graphene with two currents, Phys. Rev. Lett. 118 (2017) 036601 [arXiv:1609.03582] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    J. Crossno et al., Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene, Science 351 (2016) 1058.

    ADS  Article  Google Scholar 

  30. [30]

    S.M. Young et al., Dirac semimetal in three dimensions, Phys. Rev. Lett. 108 (2012) 140405.

    ADS  Article  Google Scholar 

  31. [31]

    A.H. Castro Neto et al., The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109 [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    C. Fang, M.J. Gilbert, X.Dai and B.A. Bernevig, Topological semimetals stabilized by point group symmetry, Phys. Rev. Lett. 108 (2012) 266802.

    ADS  Article  Google Scholar 

  33. [33]

    B.J. Yang and N. Nagaosa, Classification of stable three-dimensional Dirac semimetals with nontrivial topology, Nature Commun. 5 (2014) 4989.

    Article  Google Scholar 

  34. [34]

    N.P. Armitage, E.J. Mele and A. Vishvanath, Weyl and Dirac semimetals in three dimensional solids, arXiv:1705:01111.

  35. [35]

    L. Levitov and G. Falkovich, Electron viscosity, current vortices and negative nonlocal resistance in graphene, Nature Phys. 12 (2016) 672.

    ADS  Article  Google Scholar 

  36. [36]

    T. Liang et al., Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd 3 As 2, Nature Math. 14 (2015) 280.

    ADS  Article  Google Scholar 

  37. [37]

    T. Liang et al., Anomalous Nernst effect in the Dirac semimetal Cd 3 As 2, Phys. Rev. Lett. 118 (2017) 136601 [arXiv:1610.02459] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    L.P. He and S.Y. Li, Quantum transport properties of the three-dimensional Dirac semimetal Cd 3 As 2 single crystals, Chin. Phys. B 25 (2016) 117105.

    ADS  Article  Google Scholar 

  39. [39]

    S. Murakami, Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase, New J. Phys. 9 (2007) 356.

    ADS  Article  Google Scholar 

  40. [40]

    D. Hsieh et al., A topological Dirac insulator in a quantum spin Hall phase, Nature 452 (2008) 970.

    ADS  Article  Google Scholar 

  41. [41]

    M. Neupane et al., Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd 3 As 2, Nature Commun. 5 (2014) 3786.

    Article  Google Scholar 

  42. [42]

    M. Neupane et al., Observation of topological nodal fermion semimetal phase in ZrSiS, Phys. Rev. B 93 (2016) 201104.

    ADS  Article  Google Scholar 

  43. [43]

    Z. Wang et al., Dirac semimetal and topological phase transitions in A 3 Bi (A = Na, K, Rb), Phys. Rev. B 85 (2012) 195320.

    ADS  Article  Google Scholar 

  44. [44]

    Z. Wang et al., Three-dimensional Dirac semimetal and quantum transport in Cd 3 As 2, Phys. Rev. B 88 (2013) 125427.

    ADS  Article  Google Scholar 

  45. [45]

    M. Brahlek et al., Topological metal to band-insulator transition in (Bi 1−x In x ) 2 Se 3 thin films, Phys. Rev. Lett. 109 (2013) 186403.

    ADS  Article  Google Scholar 

  46. [46]

    L. Wu et al., A sudden collapse in the transport lifetime across the topological phase transition in (Bi 1−x In x ) 2 Se 3, Nature Phys. 9 (2013) 410.

    ADS  Article  Google Scholar 

  47. [47]

    Z.K. Liu et al., Discovery of a three-dimensional topological Dirac semimetal, Na 3 Bi, Science 343 (2014) 864.

    ADS  Article  Google Scholar 

  48. [48]

    S.Y. Xu et al., Observation of Fermi arc surface states in a topological metal, Science 347 (2015) 294.

    ADS  Article  Google Scholar 

  49. [49]

    Z.K. Liu et al., A stable threedimensional topological Dirac semimetal Cd 3 As 2, Nature Math. 13 (2014) 677.

    ADS  Article  Google Scholar 

  50. [50]

    H.Z. Lu and S.Q. Shen, Quantum transport in topological semimetals under magnetic fields, Front. Phys. 12 (2017) 127201.

    Article  Google Scholar 

  51. [51]

    R. Lundgren, P. Laurell and G.A. Fiete, Thermoelectric properties of Weyl and Dirac semimetals, Phys. Rev. B 90 (2014) 165115 [arXiv:1407.1435] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    V. Aji, Adler Bell Jackiw anomaly in Weyl semi-metals: application to pyrochlore iridates, Phys. Rev. B 85 (2012) 241101.

    ADS  Article  Google Scholar 

  53. [53]

    D.T. Son and B.Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B 88 (2013) 104412 [arXiv:1206.1627] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    A. Donos and J. P. Gauntlett, Holographic Q lattices, JHEP 04 (2014) 040.

    ADS  Article  Google Scholar 

  55. [55]

    S.S. Yazadjiev, Generating dyonic solutions in 5D Einstein-dilaton gravity with antisymmetric forms and dyonic black rings, Phys. Rev. D 73 (2006) 124032 [hep-th/0512229] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    G.W. Gibbons and K.I. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys. B 298 (1988) 741 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    S.Sachdev, What can gauge-gravity duality teach us about condensed matter physics?, Annu. Rev. Cond. Mat. Phys. 3 (2012) 9.

    Article  Google Scholar 

  58. [58]

    J. Gooth et al., Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP, Nature 547 (2017) 324 [arXiv:1703.10682] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    M. Ammon, J. Erdmenger, P. Kerner and M. Strydom, Black hole instability induced by a magnetic field, Phys. Lett. B 706 (2011) 94 [arXiv:1106.4551] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    F.C. Adams, G. Laughlin, M. Mbonye and M.J. Perry, Gravitational demise of cold degenerate stars, Phys. Rev. D 58 (1998) 083003 [astro-ph/9808250] [INSPIRE].

  62. [62]

    J. Xiong et al., Anomalous conductivity tensor in the Dirac semimetal Na3Bi, Eur. Phys. Lett. 114 (2016) 27002.

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Marek Rogatko.

Additional information

ArXiv ePrint: 1712.01608

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rogatko, M., Wysokinski, K.I. Holographic calculation of the magneto-transport coefficients in Dirac semimetals. J. High Energ. Phys. 2018, 78 (2018).

Download citation


  • AdS-CFT Correspondence
  • Holography and condensed matter physics (AdS/CMT)