Journal of High Energy Physics

, 2017:124 | Cite as

Exactly marginal deformations from exceptional generalised geometry

  • Anthony Ashmore
  • Maxime Gabella
  • Mariana Graña
  • Michela Petrini
  • Daniel Waldram
Open Access
Regular Article - Theoretical Physics


We apply exceptional generalised geometry to the study of exactly marginal deformations of \( \mathcal{N} \) = 1 SCFTs that are dual to generic AdS5 flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries.

Our analysis holds for any \( \mathcal{N} \) = 2 AdS5 flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.


AdS-CFT Correspondence Flux compactifications 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional \( \mathcal{N} \) = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    B. Kol, On conformal deformations, JHEP 09 (2002) 046 [hep-th/0205141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly marginal deformations and global symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    B. Kol, On conformal deformations II, arXiv:1005.4408 [INSPIRE].
  5. [5]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of \( \mathcal{N} \) = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    M. Graña and J. Polchinski, Supersymmetric three form flux perturbations on AdS 5, Phys. Rev. D 63 (2001) 026001 [hep-th/0009211] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    O. Aharony, B. Kol and S. Yankielowicz, On exactly marginal deformations of \( \mathcal{N} \) = 4 SYM and type IIB supergravity on AdS 5 × S 5, JHEP 06 (2002) 039 [hep-th/0205090] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. Arabi Ardehali and L.A. Pando Zayas, On exactly marginal deformations dual to B-field moduli of IIB theory on SE 5, JHEP 09 (2014) 164 [arXiv:1405.5290] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Minasian, M. Petrini and A. Zaffaroni, Gravity duals to deformed SYM theories and generalized complex geometry, JHEP 12 (2006) 055 [hep-th/0606257] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A. Butti, D. Forcella, L. Martucci, R. Minasian, M. Petrini and A. Zaffaroni, On the geometry and the moduli space of beta-deformed quiver gauge theories, JHEP 07 (2008) 053 [arXiv:0712.1215] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281 [math/0209099] [INSPIRE].
  13. [13]
    M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].
  14. [14]
    C.M. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    P. Pires Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    A. Ashmore, M. Petrini and D. Waldram, The exceptional generalised geometry of supersymmetric AdS flux backgrounds, JHEP 12 (2016) 146 [arXiv:1602.02158] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Ashmore and D. Waldram, Exceptional Calabi-Yau spaces: the geometry of \( \mathcal{N} \) = 2 backgrounds with flux, arXiv:1510.00022 [INSPIRE].
  18. [18]
    Y. Tachikawa, Five-dimensional supergravity dual of a-maximization, Nucl. Phys. B 733 (2006) 188 [hep-th/0507057] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    M. Graña and P. Ntokos, Generalized geometric vacua with eight supercharges, JHEP 08 (2016) 107 [arXiv:1605.06383] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    R. Eager, J. Schmude and Y. Tachikawa, Superconformal indices, Sasaki-Einstein manifolds and cyclic homologies, Adv. Theor. Math. Phys. 18 (2014) 129 [arXiv:1207.0573] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    S. Benvenuti and A. Hanany, Conformal manifolds for the conifold and other toric field theories, JHEP 08 (2005) 024 [hep-th/0502043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    J.P. Gauntlett, D. Martelli, J.F. Sparks and D. Waldram, A new infinite class of Sasaki-Einstein manifolds, Adv. Theor. Math. Phys. 8 (2004) 987 [hep-th/0403038] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S 2 × S 3, Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 06 (2005) 064 [hep-th/0411264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. Math. 81 (1965) 451MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    J. Louis, P. Smyth and H. Triendl, Supersymmetric vacua in \( \mathcal{N} \) = 2 supergravity, JHEP 08 (2012) 039 [arXiv:1204.3893] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    R. Thomas, Notes on GIT and symplectic reduction for bundles and varieties, math/0512411.
  31. [31]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, arXiv:1401.3360 [INSPIRE].
  32. [32]
    P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    D. Berenstein, C.P. Herzog, P. Ouyang and S. Pinansky, Supersymmetry breaking from a Calabi-Yau singularity, JHEP 09 (2005) 084 [hep-th/0505029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    K. Pilch and N.P. Warner, A new supersymmetric compactification of chiral IIB supergravity, Phys. Lett. B 487 (2000) 22 [hep-th/0002192] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    A. Coimbra, C. Strickland-Constable and D. Waldram, \( {E_d}_{(d)}\times {\mathbb{R}}^{+} \) generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry II: \( {E_d}_{(d)}\times {\mathbb{R}}^{+} \) and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Anthony Ashmore
    • 1
    • 2
  • Maxime Gabella
    • 3
  • Mariana Graña
    • 4
  • Michela Petrini
    • 5
  • Daniel Waldram
    • 6
  1. 1.Merton CollegeUniversity of OxfordOxfordU.K.
  2. 2.Mathematical InstituteUniversity of OxfordOxfordU.K.
  3. 3.Institute for Advanced StudyPrincetonU.S.A.
  4. 4.Institut de Physique Théorique, CEA/SaclayGif-sur-YvetteFrance
  5. 5.Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHEParisFrance
  6. 6.Department of PhysicsImperial College LondonLondonU.K.

Personalised recommendations