Journal of High Energy Physics

, 2017:121 | Cite as

More on DBI action in 4D \( \mathcal{N} \) = 1 supergravity

Open Access
Regular Article - Theoretical Physics
  • 66 Downloads

Abstract

We construct a Dirac-Born-Infeld (DBI) action coupled to a two-form field in four dimensional \( \mathcal{N} \) = 1 supergravity. Our superconformal formulation of the action shows a universal way to construct it in various Poincaré supergravity formulations. We generalize the DBI action to that coupled to matter sector. We also discuss duality transformations of the DBI action, which are useful for phenomenological and cosmological applications.

Keywords

Supergravity Models Superspaces D-branes Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934) 425 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  2. [2]
    P.A.M. Dirac, An extensible model of the electron, Proc. Roy. Soc. Lond. A 268 (1962) 57 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    P.S. Howe and E. Sezgin, Superbranes, Phys. Lett. B 390 (1997) 133 [hep-th/9607227] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Aganagic, C. Popescu and J.H. Schwarz, D-brane actions with local kappa symmetry, Phys. Lett. B 393 (1997) 311 [hep-th/9610249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    E. Bergshoeff and P.K. Townsend, Super D-branes, Nucl. Phys. B 490 (1997) 145 [hep-th/9611173] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    M. Aganagic, C. Popescu and J.H. Schwarz, Gauge invariant and gauge fixed D-brane actions, Nucl. Phys. B 495 (1997) 99 [hep-th/9612080] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    E. Bergshoeff, F. Coomans, R. Kallosh, C.S. Shahbazi and A. Van Proeyen, Dirac-Born-Infeld-Volkov-Akulov and deformation of supersymmetry, JHEP 08 (2013) 100 [arXiv:1303.5662] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    M. Cederwall, A. von Gussich, B.E.W. Nilsson and A. Westerberg, The Dirichlet super three-brane in ten-dimensional type IIB supergravity, Nucl. Phys. B 490 (1997) 163 [hep-th/9610148] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    M. Cederwall, A. von Gussich, B.E.W. Nilsson, P. Sundell and A. Westerberg, The Dirichlet super p-branes in ten-dimensional type IIA and IIB supergravity, Nucl. Phys. B 490 (1997) 179 [hep-th/9611159] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    S. Cecotti and S. Ferrara, Supersymmetric Born-Infeld Lagrangians, Phys. Lett. B 187 (1987) 335 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S.M. Kuzenko and S.A. McCarthy, Nonlinear selfduality and supergravity, JHEP 02 (2003) 038 [hep-th/0212039] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S.M. Kuzenko and S.A. McCarthy, On the component structure of N = 1 supersymmetric nonlinear electrodynamics, JHEP 05 (2005) 012 [hep-th/0501172] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S.M. Kuzenko, The Fayet-Iliopoulos term and nonlinear self-duality, Phys. Rev. D 81 (2010) 085036 [arXiv:0911.5190] [INSPIRE].ADSGoogle Scholar
  14. [14]
    H. Abe, Y. Sakamura and Y. Yamada, Matter coupled Dirac-Born-Infeld action in four-dimensional N = 1 conformal supergravity, Phys. Rev. D 92 (2015) 025017 [arXiv:1504.01221] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    H. Abe, Y. Sakamura and Y. Yamada, Massive vector multiplet inflation with Dirac-Born-Infeld type action, Phys. Rev. D 91 (2015) 125042 [arXiv:1505.02235] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J. Hughes and J. Polchinski, Partially broken global supersymmetry and the superstring, Nucl. Phys. B 278 (1986) 147 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    J. Hughes, J. Liu and J. Polchinski, Supermembranes, Phys. Lett. B 180 (1986) 370 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J. Bagger and A. Galperin, A new Goldstone multiplet for partially broken supersymmetry, Phys. Rev. D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S.V. Ketov, A manifestly N = 2 supersymmetric Born-Infeld action, Mod. Phys. Lett. A 14 (1999) 501 [hep-th/9809121] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    S.M. Kuzenko and S. Theisen, Nonlinear selfduality and supersymmetry, Fortsch. Phys. 49 (2001) 273 [hep-th/0007231] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    S. Ferrara, M. Porrati and A. Sagnotti, N = 2 Born-Infeld attractors, JHEP 12 (2014) 065 [arXiv:1411.4954] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Ferrara, M. Porrati, A. Sagnotti, R. Stora and A. Yeranyan, Generalized Born-Infeld actions and projective cubic curves, Fortsch. Phys. 63 (2015) 189 [arXiv:1412.3337] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    L. Andrianopoli, R. D’Auria and M. Trigiante, On the dualization of Born-Infeld theories, Phys. Lett. B 744 (2015) 225 [arXiv:1412.6786] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    L. Andrianopoli, R. D’Auria, S. Ferrara and M. Trigiante, Observations on the partial breaking of N = 2 rigid supersymmetry, Phys. Lett. B 744 (2015) 116 [arXiv:1501.07842] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    L. Andrianopoli, P. Concha, R. D’Auria, E. Rodriguez and M. Trigiante, Observations on BI from N = 2 supergravity and the general Ward identity, JHEP 11 (2015) 061 [arXiv:1508.01474] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  28. [28]
    L. Andrianopoli, R. D’Auria, S. Ferrara and M. Trigiante, c-map for Born-Infeld theories, Phys. Lett. B 758 (2016) 423 [arXiv:1603.03338] [INSPIRE].
  29. [29]
    N. Ambrosetti, I. Antoniadis, J.-P. Derendinger and P. Tziveloglou, Nonlinear supersymmetry, brane-bulk interactions and super-Higgs without gravity, Nucl. Phys. B 835 (2010) 75 [arXiv:0911.5212] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    S. Ferrara and A. Sagnotti, Massive Born-Infeld and other dual pairs, JHEP 04 (2015) 032 [arXiv:1502.01650] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    M. Kaku and P.K. Townsend, Poincaré supergravity as broken superconformal gravity, Phys. Lett. B 76 (1978) 54 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P.K. Townsend and P. van Nieuwenhuizen, Simplifications of conformal supergravity, Phys. Rev. D 19 (1979) 3166 [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    T. Kugo and S. Uehara, Conformal and Poincaré tensor calculi in N = 1 supergravity, Nucl. Phys. B 226 (1983) 49 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Kugo and S. Uehara, N = 1 superconformal tensor calculus: multiplets with external Lorentz indices and spinor derivative operators, Prog. Theor. Phys. 73 (1985) 235 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    J. Khoury, J.-L. Lehners and B. Ovrut, Supersymmetric P(X,ϕ) and the ghost condensate, Phys. Rev. D 83 (2011) 125031 [arXiv:1012.3748] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J. Khoury, J.-L. Lehners and B.A. Ovrut, Supersymmetric Galileons, Phys. Rev. D 84 (2011) 043521 [arXiv:1103.0003] [INSPIRE].ADSGoogle Scholar
  38. [38]
    D. Baumann and D. Green, Supergravity for effective theories, JHEP 03 (2012) 001 [arXiv:1109.0293] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    F. Farakos, C. Germani, A. Kehagias and E.N. Saridakis, A new class of four-dimensional N =1 supergravity with non-minimal derivative couplings, JHEP 05 (2012) 050 [arXiv:1202.3780] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    S. Sasaki, M. Yamaguchi and D. Yokoyama, Supersymmetric DBI inflation, Phys. Lett. B 718 (2012) 1 [arXiv:1205.1353] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Koehn, J.-L. Lehners and B.A. Ovrut, Higher-derivative chiral superfield actions coupled to N = 1 supergravity, Phys. Rev. D 86 (2012) 085019 [arXiv:1207.3798] [INSPIRE].ADSGoogle Scholar
  42. [42]
    F. Farakos and A. Kehagias, Emerging potentials in higher-derivative gauged chiral models coupled to N = 1 supergravity, JHEP 11 (2012) 077 [arXiv:1207.4767] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Koehn, J.-L. Lehners and B. Ovrut, Ghost condensate in N = 1 supergravity, Phys. Rev. D 87 (2013) 065022 [arXiv:1212.2185] [INSPIRE].ADSGoogle Scholar
  44. [44]
    F. Farakos, C. Germani and A. Kehagias, On ghost-free supersymmetric galileons, JHEP 11 (2013) 045 [arXiv:1306.2961] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    R. Gwyn and J.-L. Lehners, Non-canonical inflation in supergravity, JHEP 05 (2014) 050 [arXiv:1402.5120] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    I. Dalianis and F. Farakos, Higher derivative D-term inflation in new-minimal supergravity, Phys. Lett. B 736 (2014) 299 [arXiv:1403.3053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    I. Dalianis and F. Farakos, Exponential potential for an inflaton with nonminimal kinetic coupling and its supergravity embedding, Phys. Rev. D 90 (2014) 083512 [arXiv:1405.7684] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S. Aoki and Y. Yamada, Inflation in supergravity without Kähler potential, Phys. Rev. D 90 (2014) 127701 [arXiv:1409.4183] [INSPIRE].ADSGoogle Scholar
  49. [49]
    S. Aoki and Y. Yamada, Impacts of supersymmetric higher derivative terms on inflation models in supergravity, JCAP 07 (2015) 020 [arXiv:1504.07023] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    D. Ciupke, J. Louis and A. Westphal, Higher-derivative supergravity and moduli stabilization, JHEP 10 (2015) 094 [arXiv:1505.03092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    S. Bielleman, L.E. Ibáñez, F.G. Pedro, I. Valenzuela and C. Wieck, The DBI action, higher-derivative supergravity and flattening inflaton potentials, JHEP 05 (2016) 095 [arXiv:1602.00699] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    D. Ciupke, Scalar potential from higher derivative N = 1 superspace, arXiv:1605.00651 [INSPIRE].
  53. [53]
    T. Kimura, A. Mazumdar, T. Noumi and M. Yamaguchi, Nonlocal N = 1 supersymmetry, JHEP 10 (2016) 022 [arXiv:1608.01652] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Univ. Pr., Princeton U.S.A. (1992) [INSPIRE].
  55. [55]
    D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972) 438 [Pisma Zh. Eksp. Teor. Fiz. 16 (1972) 621] [INSPIRE].
  56. [56]
    D.V. Volkov and V.P. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300 [INSPIRE].ADSGoogle Scholar
  59. [59]
    W. Siegel, Gauge spinor superfield as a scalar multiplet, Phys. Lett. B 85 (1979) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012) [INSPIRE].CrossRefMATHGoogle Scholar
  61. [61]
    S. Cecotti, S. Ferrara and M. Villasante, Linear multiplets and super Chern-Simons forms in 4D supergravity, Int. J. Mod. Phys. A 2 (1987) 1839 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Ferrara, R. Kallosh, A. Van Proeyen and T. Wrase, Linear versus non-linear supersymmetry, in general, JHEP 04 (2016) 065 [arXiv:1603.02653] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    S. Ferrara, L. Girardello, T. Kugo and A. Van Proeyen, Relation between different auxiliary field formulations of N = 1 supergravity coupled to matter, Nucl. Phys. B 223 (1983) 191 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.-P. Derendinger, F. Quevedo and M. Quirós, The linear multiplet and quantum four-dimensional string effective actions, Nucl. Phys. B 428 (1994) 282 [hep-th/9402007] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    S. Aoki and Y. Yamada, DBI action of real linear superfield in 4D N = 1 conformal supergravity, JHEP 06 (2016) 168 [arXiv:1603.06770] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    R. Kallosh and T. Wrase, Emergence of spontaneously broken supersymmetry on an anti-D3-brane in KKLT dS vacua, JHEP 12 (2014) 117 [arXiv:1411.1121] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    E.A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, \( \overline{D3} \) and dS, JHEP 05 (2015) 058 [arXiv:1502.07627] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    I. Bandos, L. Martucci, D. Sorokin and M. Tonin, Brane induced supersymmetry breaking and de Sitter supergravity, JHEP 02 (2016) 080 [arXiv:1511.03024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    B. Vercnocke and T. Wrase, Constrained superfields from an anti-D3-brane in KKLT, JHEP 08 (2016) 132 [arXiv:1605.03961] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    R. Kallosh, B. Vercnocke and T. Wrase, String theory origin of constrained multiplets, JHEP 09 (2016) 063 [arXiv:1606.09245] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Minimal supergravity models of inflation, Phys. Rev. D 88 (2013) 085038 [arXiv:1307.7696] [INSPIRE].ADSGoogle Scholar
  72. [72]
    I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    S. Ferrara, R. Kallosh and A. Linde, Cosmology with nilpotent superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  74. [74]
    R. Kallosh and A. Linde, Inflation and uplifting with nilpotent superfields, JCAP 01 (2015) 025 [arXiv:1408.5950] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    Y. Aldabergenov and S.V. Ketov, SUSY breaking after inflation in supergravity with inflaton in a massive vector supermultiplet, Phys. Lett. B 761 (2016) 115 [arXiv:1607.05366] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of PhysicsWaseda UniversityTokyoJapan
  2. 2.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations