Journal of High Energy Physics

, 2017:119 | Cite as

Holomorphic Yukawa couplings for complete intersection Calabi-Yau manifolds

  • Stefan Blesneag
  • Evgeny I. Buchbinder
  • Andre Lukas
Open Access
Regular Article - Theoretical Physics

Abstract

We develop methods to compute holomorphic Yukawa couplings for heterotic compactifications on complete intersection Calabi-Yau manifolds, generalising results of an earlier paper for Calabi-Yau hypersurfaces. Our methods are based on constructing the required bundle-valued forms explicitly and evaluating the relevant integrals over the projective ambient space. We also show how our approach relates to an earlier, algebraic one to calculate the holomorphic Yukawa couplings. A vanishing theorem, which we prove, implies that certain Yukawa couplings allowed by low-energy symmetries are zero due to topological reasons. To illustrate our methods, we calculate Yukawa couplings for SU(5)-based standard models on a co-dimension two complete intersection manifold.

Keywords

Superstring Vacua Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Strominger and E. Witten, New manifolds for superstring compactification, Commun. Math. Phys. 101 (1985) 341 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten, Symmetry breaking patterns in superstring models, Nucl. Phys. B 258 (1985) 75 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A standard model from the E 8 × E 8 heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    R. Blumenhagen, S. Moster and T. Weigand, Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds, Nucl. Phys. B 751 (2006) 186 [hep-th/0603015] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    R. Blumenhagen, S. Moster, R. Reinbacher and T. Weigand, Massless spectra of three generation U(N ) heterotic string vacua, JHEP 05 (2007) 041 [hep-th/0612039] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    L.B. Anderson, Y.-H. He and A. Lukas, Heterotic compactification, an algorithmic approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    L.B. Anderson, Y.-H. He and A. Lukas, Monad bundles in heterotic string compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring positive monad bundles and a new heterotic standard model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    V. Braun, P. Candelas and R. Davies, A three-generation Calabi-Yau manifold with small Hodge numbers, Fortsch. Phys. 58 (2010) 467 [arXiv:0910.5464] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    V. Braun, P. Candelas, R. Davies and R. Donagi, The MSSM spectrum from (0, 2)-deformations of the heterotic standard embedding, JHEP 05 (2012) 127 [arXiv:1112.1097] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].ADSGoogle Scholar
  16. [16]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic line bundle standard models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    L.B. Anderson, A. Constantin, J. Gray, A. Lukas and E. Palti, A comprehensive scan for heterotic SU(5) GUT models, JHEP 01 (2014) 047 [arXiv:1307.4787] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    E.I. Buchbinder, A. Constantin and A. Lukas, A heterotic standard model with B-L symmetry and a stable proton, JHEP 06 (2014) 100 [arXiv:1404.2767] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Strominger, Yukawa couplings in superstring compactification, Phys. Rev. Lett. 55 (1985) 2547 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Candelas, Yukawa couplings between (2, 1) forms, Nucl. Phys. B 298 (1988) 458 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 1. Compactification and discrete symmetries, Nucl. Phys. B 278 (1986) 667 [INSPIRE].
  23. [23]
    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 2. Symmetry breaking and the low-energy theory, Nucl. Phys. B 292 (1987) 606 [INSPIRE].
  24. [24]
    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, 273 Yukawa couplings for a three generation superstring model, Phys. Lett. B 192 (1987) 111 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    V. Braun, Y.-H. He and B.A. Ovrut, Yukawa couplings in heterotic standard models, JHEP 04 (2006) 019 [hep-th/0601204] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    V. Bouchard, M. Cvetič and R. Donagi, Tri-linear couplings in an heterotic minimal supersymmetric standard model, Nucl. Phys. B 745 (2006) 62 [hep-th/0602096] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    L.B. Anderson, J. Gray, D. Grayson, Y.-H. He and A. Lukas, Yukawa couplings in heterotic compactification, Commun. Math. Phys. 297 (2010) 95 [arXiv:0904.2186] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    L.B. Anderson, J. Gray and B. Ovrut, Yukawa textures from heterotic stability walls, JHEP 05 (2010) 086 [arXiv:1001.2317] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    X. de la Ossa, E. Hardy and E.E. Svanes, The heterotic superpotential and moduli, JHEP 01 (2016) 049 [arXiv:1509.08724] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
    P. Candelas, X. de la Ossa and J. McOrist, A metric for heterotic moduli, arXiv:1605.05256 [INSPIRE].
  31. [31]
    J. McOrist, On the effective field theory of heterotic vacua, arXiv:1606.05221 [INSPIRE].
  32. [32]
    S. Blesneag, E.I. Buchbinder, P. Candelas and A. Lukas, Holomorphic Yukawa couplings in heterotic string theory, JHEP 01 (2016) 152 [arXiv:1512.05322] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    P. Candelas, A.M. Dale, C.A. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau manifolds, Nucl. Phys. B 298 (1988) 493 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    P. Candelas, C.A. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau manifolds. 2. Three generation manifolds, Nucl. Phys. B 306 (1988) 113 [INSPIRE].
  35. [35]
    V. Braun, On free quotients of complete intersection Calabi-Yau manifolds, JHEP 04 (2011) 005 [arXiv:1003.3235] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Library, U.S.A. (2011).MATHGoogle Scholar
  37. [37]
    R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, Germany (1977).Google Scholar
  38. [38]
    D. Huybrechts, Complex geometry: an introduction, Springer, Germany (2005).MATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Stefan Blesneag
    • 1
  • Evgeny I. Buchbinder
    • 2
  • Andre Lukas
    • 1
  1. 1.Rudolf Peierls Centre for Theoretical PhysicsOxford UniversityOxfordU.K.
  2. 2.The University of Western AustraliaCrawleyAustralia

Personalised recommendations