Grand symmetry, spectral action and the Higgs mass

  • Agostino Devastato
  • Fedele Lizzi
  • Pierre Martinetti
Open Access
Article

Abstract

In the context of the spectral action and the noncommutative geometry approach to the standard model, we build a model based on a larger symmetry. With this grand symmetry it is natural to have the scalar field necessary to obtain the Higgs mass in the vicinity of 126 GeV. This larger symmetry mixes gauge and spin degrees of freedom without introducing extra fermions. Requiring the noncommutative space to be an almost commutative geometry (i.e. the product of manifold by a finite dimensional internal space) gives conditions for the breaking of this grand symmetry to the standard model.

Keywords

Non-Commutative Geometry Higgs Physics Beyond Standard Model GUT 

References

  1. [1]
    A. Connes, Noncommutative Geometry, Academic Press, 1984.Google Scholar
  2. [2]
    G. Landi, An Introduction to noncommutative spaces and their geometry, in Springer Lecture Notes in Physics 51, Springer Verlag (Berlin Heidelberg), 1997, hep-th/9701078 [INSPIRE].
  3. [3]
    J.M. Gracia-Bondia, J.C. Varilly and H. Figueroa, Elements of Noncommutative Geometry, Birkhauser, 2000.Google Scholar
  4. [4]
    A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives, American Mathematical Society, 2007.Google Scholar
  5. [5]
    A. Connes and J. Lott, Particle Models and Noncommutative Geometry (Expanded Version), Nucl. Phys. Proc. Suppl. 18B (1991) 29 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    M. Dubois-Violette, J. Madore and R. Kerner, Classical Bosons in a Noncommutative Geometry, Class. Quant. Grav. 6 (1989) 1709 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    M. Dubois-Violette, R. Kerner and J. Madore, Noncommutative Differential Geometry of Matrix Algebras, J. Math. Phys. 31 (1990) 316 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    T. Schucker, Forces from Connesgeometry, Lect. Notes Phys. 659 (2005) 285 [hep-th/0111236] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    A.H. Chamseddine, A. Connes and M. Marcolli, Gravity and the standard model with neutrino mixing, Adv. Theor. Math. Phys. 11 (2007) 991 [hep-th/0610241] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    K. van den Dungen and W.D. van Suijlekom, Particle Physics from Almost Commutative Spacetimes, Rev. Math. Phys. 24 (2012) 1230004 [arXiv:1204.0328] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  11. [11]
    A. Connes, On the spectral characterization of manifolds, arXiv:0810.2088 [INSPIRE].
  12. [12]
    A. Connes, Gravity coupled with matter and foundation of noncommutative geometry, Commun. Math. Phys. 182 (1996) 155 [hep-th/9603053] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    A.H. Chamseddine and A. Connes, Why the Standard Model, J. Geom. Phys. 58 (2008) 38 [arXiv:0706.3688] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    A.H. Chamseddine and A. Connes, Noncommutative Geometry as a Framework for Unification of all Fundamental Interactions including Gravity. Part I, Fortsch. Phys. 58 (2010) 553 [arXiv:1004.0464] [INSPIRE].
  15. [15]
    A.H. Chamseddine and A. Connes, The Spectral action principle, Commun. Math. Phys. 186 (1997)731 [hep-th/9606001] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    K. Fujikawa, Comment on Chiral and Conformal Anomalies, Phys. Rev. Lett. 44 (1980) 1733 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    A.A. Andrianov and L. Bonora, Finite - Mode Regularization of the Fermion Functional Integral, Nucl. Phys. B 233 (1984) 232 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A.A. Andrianov and L. Bonora, Finite Mode Regularization of the Fermion Functional Integral. 2., Nucl. Phys. B 233 (1984) 247 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Polchinski, Renormalization and Effective Lagrangians, Nucl. Phys. B 231 (1984) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F. Lizzi and P. Vitale, Gauge and PoincaréInvariant Regularization and Hopf Symmetries, Mod. Phys. Lett. A 27 (2012) 1250097 [arXiv:1202.1190] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    J.W. Barrett, A Lorentzian version of the non-commutative geometry of the standard model of particle physics, J. Math. Phys. 48 (2007) 012303 [hep-th/0608221] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    A.H. Chamseddine and A. Connes, Resilience of the Spectral Standard Model, JHEP 09 (2012)104 [arXiv:1208.1030] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    N. Krasnikov, Restriction of the Fermion Mass in Gauge Theories of Weak and Electromagnetic Interactions, Yad. Fiz. 28 (1978) 549 [INSPIRE].Google Scholar
  25. [25]
    P.Q. Hung, Vacuum Instability and New Constraints on Fermion Masses, Phys. Rev. Lett. 42 (1979)873 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H.D. Politzer and S. Wolfram, Bounds on Particle Masses in the Weinberg-Salam Model, Phys. Lett. B 82 (1979) 242 [Erratum ibid. 83B (1979) 421] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C.A. Stephan, New Scalar Fields in Noncommutative Geometry, Phys. Rev. D 79 (2009) 065013 [arXiv:0901.4676] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C.A. Stephan, Almost-commutative geometries beyond the standard model, J. Phys. A 39 (2006)9657 [hep-th/0509213] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C.A. Stephan, Almost-commutative geometries beyond the standard model. II. New Colours, J. Phys. A 40 (2007) 9941 [arXiv:0706.0595] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A.H. Chamseddine, A. Connes and W.D. van Suijlekom, Inner Fluctuations in Noncommutative Geometry without the first order condition, J. Geom. Phys. 73 (2013) 222 [arXiv:1304.7583] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  31. [31]
    A.H. Chamseddine, A. Connes and W.D. van Suijlekom, Beyond the Spectral Standard Model: Emergence of Pati-Salam Unification, JHEP 11 (2013) 132 [arXiv:1304.8050] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    F. Lizzi, G. Mangano, G. Miele and G. Sparano, Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories, Phys. Rev. D 55 (1997) 6357 [hep-th/9610035] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    J.M. Gracia-Bondia, B. Iochum and T. Schucker, The Standard model in noncommutative geometry and fermion doubling, Phys. Lett. B 416 (1998) 123 [hep-th/9709145] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    F. Lizzi, G. Mangano, G. Miele and G. Sparano, Mirror fermions in noncommutative geometry, Mod. Phys. Lett. A 13 (1998) 231 [hep-th/9704184] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    P. Martinetti, Carnot-Caratheodory metric and gauge fluctuation in noncommutative geometry, Commun. Math. Phys. 265 (2006) 585 [hep-th/0506147] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  36. [36]
    M.A. Rieffel, Morita equivalence for operator algebras, in Operator Algebras and Applications, R.V. Kadison ed., Proc. Symp. Pure Math. 285 (1982) 38, Amer. Math. Soc., Providence, 1982.Google Scholar
  37. [37]
    P. Gilkey, Invariance Theory, the Heat Equation and the Athiya-Singer Index Theorem, Publish or Perish, 1984.Google Scholar
  38. [38]
    D. Vassilevich, Heat kernel expansion: Users manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  39. [39]
    A. Andrianov and F. Lizzi, Bosonic Spectral Action Induced from Anomaly Cancelation, JHEP 05 (2010) 057 [arXiv:1001.2036] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    A. Andrianov, M. Kurkov and F. Lizzi, Spectral action, Weyl anomaly and the Higgs-Dilaton potential, JHEP 10 (2011) 001 [arXiv:1106.3263] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    M. Kurkov and F. Lizzi, Higgs-Dilaton Lagrangian from Spectral Regularization, Mod. Phys. Lett. A 27 (2012) 1250203 [arXiv:1210.2663] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. van den Broek and W.D. van Suijlekom, Supersymmetric QCD from noncommutative geometry, Phys. Lett. B 699 (2011) 119 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    W. Nelson and M. Sakellariadou, Natural inflation mechanism in asymptotic noncommutative geometry, Phys. Lett. B 680 (2009) 263 [arXiv:0903.1520] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    M. Sakellariadou, Cosmological consequences of the noncommutative spectral geometry as an approach to unification, J. Phys. Conf. Ser. 283 (2011) 012031 [arXiv:1010.4518] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Marcolli and E. Pierpaoli, Early Universe models from Noncommutative Geometry, Adv. Theor. Math. Phys. 14 (2010) [arXiv:0908.3683] [INSPIRE].
  46. [46]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  47. [47]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  48. [48]
    I. Pris and T. Schucker, Noncommutative geometry beyond the standard model, J. Math. Phys. 38 (1997) 2255 [hep-th/9604115] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  49. [49]
    M. Paschke, F. Scheck and A. Sitarz, Can (noncommutative) geometry accommodate leptoquarks?, Phys. Rev. D 59 (1999) 035003 [hep-th/9709009] [INSPIRE].ADSGoogle Scholar
  50. [50]
    T. Schucker and S. Zouzou, Spectral action beyond the standard model, hep-th/0109124 [INSPIRE].
  51. [51]
    R. Squellari and C.A. Stephan, Almost-Commutative Geometries Beyond the Standard Model. III. Vector Doublets, J. Phys. A 40 (2007) 10685 [arXiv:0706.3112] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    C.A. Stephan, Beyond the Standard Model: A Noncommutative Approach, arXiv:0905.0997 [INSPIRE].
  53. [53]
    A.H. Chamseddine and A. Connes, Conceptual Explanation for the Algebra in the Noncommutative Approach to the Standard Model, Phys. Rev. Lett. 99 (2007) 191601 [arXiv:0706.3690] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].ADSGoogle Scholar
  55. [55]
    F. Lizzi, G. Mangano, G. Miele and G. Sparano, Constraints on unified gauge theories from noncommutative geometry, Mod. Phys. Lett. A 11 (1996) 2561 [hep-th/9603095] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    P. Martinetti and R. Wulkenhaar, Discrete Kaluza-Klein from scalar fluctuations in noncommutative geometry, J. Math. Phys. 43 (2002) 182 [hep-th/0104108] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  57. [57]
    R. Wulkenhaar, The Standard model within nonassociative geometry, Phys. Lett. B 390 (1997)119 [hep-th/9607096] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  58. [58]
    S. Farnsworth and L. Boyle, Non-Associative Geometry and the Spectral Action Principle, arXiv:1303.1782 [INSPIRE].
  59. [59]
    M. Paschke and R. Verch, Local covariant quantum field theory over spectral geometries, Class. Quant. Grav. 21 (2004) 5299 [gr-qc/0405057] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  60. [60]
    N. Franco, Lorentzian approach to noncommutative geometry, arXiv:1108.0592 [INSPIRE].
  61. [61]
    L. Maiani, G. Parisi and R. Petronzio, Bounds on the Number and Masses of Quarks and Leptons, Nucl. Phys. B 136 (1978) 115 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Andrianov, D. Espriu, M. Kurkov and F. Lizzi, Universal Landau Pole, Phys. Rev. Lett. 111 (2013)011601 [arXiv:1302.4321] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    A. Connes, A Unitary invariant in Riemannian geometry, Int. J. Geom. Meth. Mod. Phys. 5 (2008)1215 [arXiv:0810.2091] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Agostino Devastato
    • 1
    • 2
  • Fedele Lizzi
    • 1
    • 2
    • 3
  • Pierre Martinetti
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di Napoli Federico IINapoliItaly
  2. 2.INFN, Sezione di NapoliNapoliItaly
  3. 3.Departament de Estructura i Constituents de la Matèria, Institut de Ciéncies del CosmosUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations