Note about Hamiltonian structure of non-linear massive gravity

Article

Abstract

We perform the Hamiltonian analysis of non-linear massive gravity action studied recently in arXiv:1106.3344 [hep-th]. We show that the Hamiltonian constraint is the second class constraint. As a result the theory possesses an odd number of the second class constraints and hence all non physical degrees of freedom cannot be eliminated.

Keywords

Models of Quantum Gravity Classical Theories of Gravity 

References

  1. [1]
    M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].
  2. [2]
    K. Hinterbichler, Theoretical aspects of massive gravity, arXiv:1105.3735 [INSPIRE].
  3. [3]
    T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified gravity and cosmology, arXiv:1106.2476 [INSPIRE].
  4. [4]
    V. Rubakov and P. Tinyakov, Infrared-modified gravities and massive gravitons, Phys. Usp. 51 (2008) 759 [arXiv:0802.4379] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. Hassan and R.A. Rosen, Resolving the ghost problem in non-linear massive gravity, arXiv:1106.3344 [INSPIRE].
  7. [7]
    S. Hassan and R.A. Rosen, On non-linear actions for massive gravity, JHEP 07 (2011) 009 [arXiv:1103.6055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    G. ’t Hooft, Unitarity in the Brout-Englert-Higgs mechanism for gravity, arXiv:0708.3184 [INSPIRE].
  9. [9]
    A.H. Chamseddine and V. Mukhanov, Massive gravity simplified: a quadratic action, JHEP 08 (2011) 091 [arXiv:1106.5868] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    L. Alberte, A.H. Chamseddine and V. Mukhanov, Massive gravity: resolving the puzzles, JHEP 12 (2010) 023 [arXiv:1008.5132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A.H. Chamseddine and V. Mukhanov, Higgs for graviton: simple and elegant solution, JHEP 08 (2010) 011 [arXiv:1002.3877] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Iglesias and Z. Kakushadze, Non-perturbative unitarity of gravitational Higgs mechanism, Phys. Rev. D 84 (2011) 084005 [arXiv:1102.4991] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J. Kluson, Hamiltonian analysis of the Higgs mechanism for gravity, Class. Quant. Grav. 28 (2011) 155014 [arXiv:1005.5458] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Folkerts, A. Pritzel and N. Wintergerst, On ghosts in theories of self-interacting massive spin-2 particles, arXiv:1107.3157 [INSPIRE].
  17. [17]
    C. de Rham, G. Gabadadze and A. Tolley, Ghost free massive gravity in the Stu¨ckelberg language, arXiv:1107.3820 [INSPIRE].
  18. [18]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, gr-qc/0405109 [INSPIRE].
  19. [19]
    E. Gourgoulhon, 3 + 1 formalism and bases of numerical relativity, gr-qc/0703035 [INSPIRE].
  20. [20]
    P. Hoˇrava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    R. Floreanini and R. Jackiw, Selfdual fields as charge density solitons, Phys. Rev. Lett. 59 (1987) 1873 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Henneaux and C. Teitelboim, Dynamics of chiral (selfdual) p forms, Phys. Lett. B 206 (1988) 650 [INSPIRE].ADSGoogle Scholar
  23. [23]
    G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava, et al., Massive cosmologies, arXiv:1108.5231 [INSPIRE].
  24. [24]
    C. de Rham, G. Gabadadze and A.J. Tolley, Helicity decomposition of ghost-free massive gravity, JHEP 11 (2011) 093 [arXiv:1108.4521] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations