Skip to main content
Log in

The impact of inflammation to the antioxidant defense parameters in AMD patients

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims: Oxidative stress and inflammation are postulated to be involved in the pathogenesis of the age-related macular degeneration (AMD) although the mechanism linking the oxidation and inflammation is still unknown. The aim of this study was the analysis of the antioxidant capacity measured by levels of the antioxidant enzymes: superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and total antioxidant status (TAS) along with the inflammatory markers such as Creactive protein (CRP), interleukin-6 (IL-6) and fibrinogen in AMD patients in order to analyze the relationship of the inflammatory markers with the antioxidant parameters and their association with AMD. Methods: The cross-sectional study, carried out in the University clinical setting, included 84 patients with the age-related macular degeneration, aged 71.25±7.14 years and 84 aged-matched control subjects (CG). Results: Statistical analysis revealed significantly lower GR (p=0.007) and TAS (p<0.000) values in the group of AMD patients compared to the controls. Logistic regression analysis showed that higher values of inflammatory markers (CRP>3 mg/L, IL>4.9 pg/mL, fibrinogen>3.8 g/L) and lower values of antioxidative parameters (SOD<900 U/gHb, GR<55 U/L and TAS<1.15 mmol/L) were significantly associated with AMD (ORCRP: 1.29, 95% CI 0.54-3.12, p<0.05; ORIL-6: 3.53, 95% CI 1.16–10.75, p=0.024; ORFIB: 3.06, 95% CI 1.78–7.92, p=0.019; ORSOD: 2.39, 95% CI 0.78–7.35, p<0.05; ORGR: 4.04, 95% CI 1.28–12.73, p=0.013; ORTAS: 2.9, 95% CI 1.4–6.3, p=0.032). Conclusions: Based on the results obtained, it may be concluded that the antioxidant defense system was significantly reduced in patients with AMD and the probability to develop AMD was higher in older individuals with lower values of antioxidant parameters and higher values of inflammatory markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Colak E. New markers of oxidative modifications to macromolecules. J Med Biochem 2008; 27: 1–16.

    Article  CAS  Google Scholar 

  2. Coleman H, Chan CC, Ferris FL, Chew EY. Age-related macular degeneration. Lancet 2008; 372: 1835–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep 2006; 58: 353–63.

    CAS  PubMed  Google Scholar 

  4. Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Molecular Vision 1999; 5: 32–45.

    CAS  PubMed  Google Scholar 

  5. Lange CAK, Bainbridge JWB. Oxygen sensing in retinal health and disease. Ophthalmologica 2012; 227: 115–31.

    Article  CAS  PubMed  Google Scholar 

  6. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of the aging. Proc Natl Acad Sci USA 1993; 90: 7915–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nikolic-Kokic A, Blagojevic D, Spasic MB. Complexity of free radical metabolism in human erythrocytes. J Med Biochem 2010; 29: 189–95.

    Article  CAS  Google Scholar 

  8. Vine AK, Stader J, Branham K, Musch DC, Swaroop A. Biomarkers of cardiovascular disease as risk factors for age-related macular degeneration. Ophthalmology 2005; 112: 2076–80.

    Article  PubMed  Google Scholar 

  9. Schaumberg DA, Christen WG, Buring JE, Glynn RJ, Rifai N, Ridker PM. High-sensitivity C-reactive protein, other markers of inflammation, and the incidence of macular degeneration in women. Arch Ophthalmol 2007; 125: 300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Omoigui S. The interleukin-6 inflammation pathway from cholesterol to aging — Role of statins, bisphosphonates and plant polyphenols in aging and age-related diseases. Immun Ageing 2007; 4: 1–28.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Seddon JM, George S, Rosner B, Rifai N. Progression of the agerelated macular degeneration: prospective assessment of C-reactive protein, interleukin 6 and other cardiovascular biomarkers. Arch Ophthalmol 2005; 123: 774–82.

    Article  PubMed  Google Scholar 

  12. Goldstein S, Michel C, Boors A, Saran M, Czapsky G. A critical re-evaluation of some assay methods for superoxide dismutase activity. Free Radical Biol Med 1988; 4: 295–303.

    Article  CAS  Google Scholar 

  13. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of glutathione peroxidase. J Lab Clin Med 1967; 70: 158–63.

    CAS  PubMed  Google Scholar 

  14. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 1993; 84: 407–12.

    Article  CAS  Google Scholar 

  15. Goldberg DM, Spooner RJ. In Bergmeyer HU (Ed) Methods of enzymatic analysis, 3rd ed. New York: Academic Press; Vol 3, 1974: pp 258–65.

    Google Scholar 

  16. Wakamatsu TH, Dogru M, Tsubota K. Tearful relations: oxidative stress, inflammation and eye diseases. Arq Bras Oftalmol 2008; 71 (Suppl):72–9.

    Article  PubMed  Google Scholar 

  17. Yildirim Z, Uegun NI, Yildirim F. The role of oxidative stress and antioxidants in pathogenesis of age-related macular degeneration. Clinics 2011; 66: 743–6.

    PubMed  PubMed Central  Google Scholar 

  18. Imamura Y, Noda S, Hashizuma K et al. Drusen, choroidal neovascularization and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci USA 2006; 103: 11282–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hübner-Wozniak E, Okecka-Szymanska J, Stupnicki R, Malara M, Kozdron E. Age-related blood antioxidant capacity in men and women. J Med Biochem 2011; 30: 103–8.

    Article  Google Scholar 

  20. Klouche M, Rose-John S, Schmiedt W, Bhakdi S. Enzymatically degraded, nonoxidized LDL induces human vascular smooth muscle cell activation, foam cell transformation, and proliferation. Circulation 2000; 101: 1799–805.

    Article  CAS  PubMed  Google Scholar 

  21. Williams N, Bertoncello I, Jackson H, Arnold J, Kavnoudias H. The role of interleukin 6 in megakaryocyte formation, megakaryocyte development and platelet production. Ciba Found Symp 1992; 167: 160–70.

    CAS  PubMed  Google Scholar 

  22. Seino Y, Ikeda U, Ikeda M et al. Interleukin 6 gene transcripts are expressed in human atherosclerotic lesions. Cytokine 1994; 6: 87–91.

    Article  CAS  PubMed  Google Scholar 

  23. Burstein SA. Effects of interleukin 6 on megakaryocytes and on canine platelet function. Stem Cells 1994; 12: 386–93.

    Article  CAS  PubMed  Google Scholar 

  24. Verma S, Badiwala MV, Weisel RD et al. C-reactive protein upregulates the NF-?B signaling pathway in saphenous vein endothelial cells: implications for atherosclerosis and restenosis. J Thorac Cardiovasc Surg 2003; 126: 1886–91.

    Article  CAS  PubMed  Google Scholar 

  25. Colak E, Kosanovic-Jakovic N, <Zoric L, Radosavljevic A, Stankovic S, Majkic-Singh N. The association of lipoprotein parameters and C-reactive protein in patients with age-related macular degeneration. Ophthalmic Res 2011; 46: 125–32.

    Article  CAS  PubMed  Google Scholar 

  26. Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N. Association between C-reactive protein and age-related macular degeneration. JAMA 2004; 291: 704–10.

    Article  CAS  PubMed  Google Scholar 

  27. Nagaoka T, Kuo L, Ren Y, Yoshida A, Hein TW. C-Reactive Protein inhibits endothelium-dependent nitric oxide-mediated dilation of retinal arterioles via enhanced superoxide production. Invest Ophthalmol Vis Sci 2008; 49: 2053–60.

    Article  PubMed  Google Scholar 

  28. De Jong PT, Boekhoorn SS, Vingerling JR, Witteman JCM, Hofman A. C-reactive protein and incident aging macular disease (AMD): The Rotterdam Study. Invest Ophthalmol Vis Sci 2005; 46: E-Abstract 2379.

    Google Scholar 

  29. Kikuchi M, Nakamura M, Ishikawa K et al. Elevated C-reactive protein levels in patients with polypoidal choroidal vasculopathy and patients with neovascular age-related macular degeneration. Ophthalmol 2007; 114: 1722–7.

    Article  Google Scholar 

  30. Boekhoom SS, Vingerling JR, Witteman JC, Hofman A, de Jong P. C-reactive protein level and risk of aging macula disorder: The Rotterdam Study. Arch Ophthalmol 2007; 125: 1396–401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emina Čolak M.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čolak, E., Majkić-Singh, N., Žorić, L. et al. The impact of inflammation to the antioxidant defense parameters in AMD patients. Aging Clin Exp Res 24, 588–594 (2012). https://doi.org/10.1007/BF03654844

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03654844

Key words

Navigation