Skip to main content
Log in

The influence of age and gender on antioxidant enzyme activities in humans and laboratory animals

  • Review Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Antioxidative/oxidative balance is one of the important factors for homeostasis. Antioxidative systems which protect from peroxidative damage are supposed to be under the influence of steroid hormones. The implications of this influence are age and gender as well as tissue dependent alterations in antioxidative enzyme activities. Apart from hormonal influence, antioxidative enzymes require the presence of microelements in their active centers as well as concerted action of non enzymatic antioxidants which support enzymes in their scavenging action. The aim of this review is to analyze and compare existing knowledge about the changes in activity of antioxidant enzymes in human and animal females and males of different age. Evidence as regards participation of oxidative stress in senescence are specific diseases which, to some extent, are gender dependent and appear more frequently in males or females. Several experiments in laboratory animals revealed that changes in enzyme activities are reflected in histopathological pictures of cells. The alterations observed during perimenopausal period provide with additional evidence of the participation of steroid hormones in the regulation of antioxidative system activity. Moreover, estrogens themselves exhibit antioxidative activity which is receptor independent. In conclusion, apart from genetic-related influences, also diet and style of life may have an impact on the antioxidative system which requires appropriate supplementation in microelements and vitamins for its effective function of scavenging excess of free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Buonocore G, Perlone S, Tataranno ML. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin Fetal Neonatal Med 2010; 15: 186–90.

    Article  PubMed  Google Scholar 

  2. Ho SP, Chan-Yeung M, Chow KKM, Ip MSM, Mak JCW. Antioxidant enzyme activities in healthy Chinese adults: influence of age, gender and smoking. Respirology 2005; 10: 305–9.

    Article  PubMed  Google Scholar 

  3. Oury TD, Day BJ, Crapo JD. Extracellular superoxide dismutase: a regulator of nitric oxide bioavailability. Lab Invest 1996; 75: 617–36.

    CAS  PubMed  Google Scholar 

  4. de Lamirande E, Gagnon C. A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl 1993; 16: 21–5.

    Article  PubMed  Google Scholar 

  5. de Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Rev Reprod 1997; 2: 48–54.

    Article  PubMed  Google Scholar 

  6. Leclerc P, de Lamirande E, Gagnon C. Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Rad Biol Med 1997; 22: 643–56.

    Article  CAS  PubMed  Google Scholar 

  7. Delanty N, Dichter MA. Oxidative injury in the nervous system. Acta Neurol Scand 1998; 98: 145–53.

    Article  CAS  PubMed  Google Scholar 

  8. Bowler RP, Crapo JD. Oxidative stress in airways: is there a role for extracellular superoxide dismutase? Am J Respir Crit Care Med 2002; 166: 38–43.

    Article  Google Scholar 

  9. Fukai T, Folz RJ, Landmesser U, Harrison DG. Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 2002; 55: 239–49.

    Article  CAS  PubMed  Google Scholar 

  10. Matés JM, Sánchez-Jiménez FM. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 2000; 32: 157–70.

    Article  PubMed  Google Scholar 

  11. Fattman CL, Schaefer LM, Oury TD. Extracellular superoxide dismumutase in biology and medicine. Free Radic Biol Med 2003; 35: 236–56.

    Article  CAS  PubMed  Google Scholar 

  12. Bartosz G. Superoxide Dismutases and Catalase. The Handbook of Environmental Chemistry, Vol. 2. 2005: pp 109–49.

    Google Scholar 

  13. Brigelius-Floh’e R. Tissue specific function of individual glutathione peroxydases. Free Radic Biol Med 1999; 27: 951–65.

    Article  Google Scholar 

  14. Kodaman PH, Behrman HR. Endocrine-regulated and protein kinase C-dependent generation of superoxide by rat preovulatory follicles. Endocrinology 2001; 42: 687–93.

    Article  Google Scholar 

  15. Sinet PM, Garber P. Inactivation of the human CuZn superoxide dismutase during exposure to O2 and H2O2. Arch Biochem Biophys 1981; 212: 411–6.

    Article  CAS  PubMed  Google Scholar 

  16. Nordberg J, Arner ESJ. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001; 31: 1287–312.

    Article  CAS  PubMed  Google Scholar 

  17. Turturro A, Witt WW, Lewis S, Hass BS, Lipman RD, Hart RW. Growth curves and survival characteristics of the animals used in the Biomarkers of Aging Program. J Gerontol A Biol Sci Med Sci 1999; 54: B492–501.

    Article  CAS  PubMed  Google Scholar 

  18. Massafra C, Gioia D, De Felice C et al. Effects of estrogens and androgens on erythrocyte antioxidant superoxide dismutase, catalase and glutathione peroxidase activities during the menstrual cycle. J Endocrinol 2000; 167: 447–52.

    Article  CAS  PubMed  Google Scholar 

  19. Massafra C, Gioia D, De Felice C, Muscettola M, Longini M, Buonocore G. Gender-related differences in erythrocyte glutathione peroxidase activity in healthy subjects. Clin Endocrinol 2002; 57: 663–7.

    Article  CAS  Google Scholar 

  20. Pajovic SB, Saicic ZS. Modulation of antioxidant enzyme activities by sexual steroid hormones. Physiol Res 2008; 57: 801–11

    Article  CAS  PubMed  Google Scholar 

  21. Sugioka K, Shimosegawa Y, Nakano M. Estrogens as natural antioxidants of membrane phospholipid peroxidation. FEBS Lett 1987; 210: 37–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ayres S, Abplanalp W, Liu JH, Subbiah MTR. Mechanisms involved in the protective effect of estradiol-17β on lipid peroxidation and DNA damage. Am J Physiol 1998; 274: 1002–8.

    Google Scholar 

  23. Pfeilschifter J, Koeditz R, Pfohl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocr Rev 2002; 23: 90–119.

    Article  CAS  PubMed  Google Scholar 

  24. Mooradian AD. Antioxidant properties of steroids. J Steroid Biochem Mol Biol 1993; 45: 509–11.

    Article  CAS  PubMed  Google Scholar 

  25. Green PS, Gordon K, Simpkins JW. Phenolic A ring requirement for the neuroprotective effects of steroids. J. Steroid Biochem Mol Biol 1997; 63: 229–35.

    Article  CAS  PubMed  Google Scholar 

  26. Munoz-Castaneda JR, Muntane J, Munoz MC, Bujalance I, Montilla P, Tunez I. Estradiol and catecholestrogens protect against adriamycin-induced oxidative stress in erythrocytes of ovariectomized rats. Toxicol Lett 2006; 160: 196–203.

    Article  CAS  PubMed  Google Scholar 

  27. Kim YD, Farhat MY, Myers AK et al. 17β-Estradiol regulation of myocardial glutathione and its role in protection against myocardial stunning in dogs. J Cardiovasc Pharmacol 2006; 32: 457–65.

    Article  Google Scholar 

  28. Strehlow K, Rotter S, Wassmann S et al. Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 2003; 93: 170–8.

    Article  CAS  PubMed  Google Scholar 

  29. Wassmann K, Wassmann S, Nickenig G. Progesterone antagonizes the vasoprotective effect of estrogen on antioxidant enzyme expression and function. Circ Res 2005; 97: 1046–54.

    Article  CAS  PubMed  Google Scholar 

  30. Barp J, Araújo ASR, Fernandes TRG et al. Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz J Med Biol Res 2002; 35: 1075–81.

    Article  CAS  PubMed  Google Scholar 

  31. Mo JQ, Hom DG, Andersen JK. Decreases in protective enzymes correlate with increased oxidant damage in the ageing mouse brain. Mech Ageing Dev 1995; 81: 73–82

    Article  CAS  PubMed  Google Scholar 

  32. Hauck SJ, Bartke A. Effects of growth hormone on hypothalamic catalase and Cu/Zn superoxide dismutase. Free Radic Biol Med 2000; 28: 970–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hamilton ML, Van Remmen H, Drake JA et al. Does oxidant damage to DNA increase with age? Proc Natl Acad Sci USA 2001; 98: 10469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sobocanec S, Balog T, <Sverko V et al. Sex-dependent antioxidant enzyme activities and lipid peroxidation in ageing mouse brain. Free Radic Res 2003; 37: 743–8.

    Article  CAS  PubMed  Google Scholar 

  35. <Sverko V, Sobocanec S, Balog T et al. Age and gender differences in antioxidant enzyme activity: potential relationship to liver carcinogenesis in male mice. Biogerontology 2004; 5: 235–42

    Article  PubMed  Google Scholar 

  36. Wozniak A, Drewa G, Wozniak B et al. Activity of antioxidant enzymes and concentration of lipid peroxidation products in selected tissues of mice of different ages, both healthy and melanoma-bearing. Z Gerontol Geriatr 2004; 37: 184–9.

    Article  CAS  PubMed  Google Scholar 

  37. Ehrenbrink G, Hakenhaar FS, Salomon TB et al. Antioxidant enzymes activities and protein damage in rat brain of both sexes. Exp Gerontol 2006; 41: 368–71.

    Article  CAS  PubMed  Google Scholar 

  38. Brown-Borg HM, Rakoczy SG. Catalase expression in delayed and premature aging mouse models. Exp Gerontol 2000; 35: 199–212.

    Article  CAS  PubMed  Google Scholar 

  39. Cao L, Leers-Sucheta S, Azhar S. Aging alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells. J Steroid Biochem Mol Biol 2004; 88: 61–7.

    Article  CAS  PubMed  Google Scholar 

  40. Naziroglu M, Simsek M, Simsek H. The effects of hormone replacement therapy combined with vitamins C and E on antioxidants levels and lipid profiles in post menopausal women with Type 2 diabetes. Clin Chim Acta 2004; 344: 63–71.

    Article  CAS  PubMed  Google Scholar 

  41. Vermeulen A. Andropause. Maturitas 2000; 34: 5–15.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu Y, Carvey PM, Ling Z. Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res 2006; 1090: 35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sugino N. Reactive oxygen species in ovarian physiology. Reprod Med Biol 2005; 4: 31–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taylor TC. Antioxidants and reactive oxygen species in human fertility. Environ Toxicol Pharmacol 2001; 10: 189–98.

    Article  CAS  PubMed  Google Scholar 

  45. Laloraya M, Kumar GP, Laloraya MM. Changes in the levels of superoxide anion radical and superoxide dismutase during the estrous cycle of rattus norvegicus and induction of superoxide dismutase in rat ovary by lutropin. Biochem Biophys Res Commun 1988; 157: 146–53.

    Article  CAS  PubMed  Google Scholar 

  46. Laloraya M, Kumar GP, Laloraya MM. Histochemical study of superoxide dismutase in the ovary of the rat during the oestrous cycle. J Reprod Fertil 1989; 86: 583–7.

    Article  CAS  PubMed  Google Scholar 

  47. Loukides JA, Loy RA, Edwards R et al. Human follicular fluids contain tissue macrophages. J Clin Endocrinol Metab 1990; 71: 1363–7.

    Article  CAS  PubMed  Google Scholar 

  48. Miyazaki T, Sueoka K, Dharmarajan AM et al. Effect of inhibition of oxygen free radical on ovulation and progesterone production by the in-vitro perfused rabbit ovary. J Reprod Fertil 1991; 91: 207–12.

    Article  CAS  PubMed  Google Scholar 

  49. Kodaman PH, Behrman HR. Endocrine-regulated and protein kinase C-dependent generation of superoxide by rat preovulatory follicles. Endocrinology 2001; 142: 687–93.

    Article  CAS  PubMed  Google Scholar 

  50. Agarwal A, Gupta S, Sekhon L et al. Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10: 1375–403.

    Article  CAS  PubMed  Google Scholar 

  51. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 2010; 42: 1634–50.

    Article  CAS  PubMed  Google Scholar 

  52. Rueda BR, Tilly KI, Hansen TR et al. Expression of superoxide dismutase, catalase and glutathione peroxidase in the bovine corpus luteum: evidence supporting a role for oxidative stress in luteolysis. Endocrine 1995; 3: 227–32.

    Article  CAS  PubMed  Google Scholar 

  53. Al-Gubory KH, Ceballos-Picot I, Nicole A et al. Changes in activities of superoxide dismutase, nitric oxide synthase, glutathionedependent enzymes and the incidence of apoptosis in sheep corpus luteum during the estrous cycle. Biochim Biophys Acta 2005; 1725: 348–57.

    Article  CAS  PubMed  Google Scholar 

  54. Agarwal P, Laloraya MM. Induction of peroxidase in corpora lutea of rat ovary by luteinizing hormone. Biochem J 1977; 166: 205–8.

    Article  Google Scholar 

  55. Vina J, Sastre J, Pallardo F, Borras C Mitochondrial theory of aging: importance to explain why females live longer than males. Antioxid Redox Signal 2003; 5: 549–56.

    Article  CAS  PubMed  Google Scholar 

  56. Glauser TA, Titanic-Schefft M, Pippenger CE. Racial differences in free radical scavenging enzyme activity in children. J Child Neurol 1999; 14: 382–7.

    Article  CAS  PubMed  Google Scholar 

  57. Habif S, Mutaf I, Turgan N et al. Age and gender dependent alterations in the activities of glutathione related enzymes in healthy subjects. Clin Biochem 200; 34: 667–71.

  58. Bolzán AD, Bianchi MS, Bianchi N. Superoxide dismutase, catalase and glutathione peroxidase activities in human blood: influence of sex, age and cigarette smoking. Clin Biochem 199; 30: 449–54.

  59. Mariani E, Cornacchiola V, Polidori MC et al. Antioxidant enzyme activities in healthy old subjects: influence of age, gender and zinc status. Results from the Zincage Project. Biogerontology 2006; 7: 391–8.

    Article  CAS  PubMed  Google Scholar 

  60. Inal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta 2001; 305: 75–80.

    Article  CAS  PubMed  Google Scholar 

  61. Unfer TC, Conterato GMM, Silva JCN, Duarte MMF, Emanuelli T. Influence of hormone replacement therapy on blood antioxidant enzymes in menopausal women. Clin Chim Acta 2006; 369: 73–7.

    Article  CAS  PubMed  Google Scholar 

  62. Prashant AV, Harishchandra H, D’souza V, D’souza B. Age related changes in lipid peroxidation and antioxidants in elderly people. Indian J Clin Biochem 2007; 22: 131–4.

    Article  Google Scholar 

  63. Hensley K, Butterfield DA, Hall N et al. Reactive oxygen species as causal agents in the neurotoxicity of the Alzheimer’s diseaseassociated amyloid beta peptide. Ann NY Acad Sci 1996; 786: 120–34.

    Article  CAS  PubMed  Google Scholar 

  64. Behl C, Davis JB, Lesley R et al. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 1994; 77: 817–27.

    Article  CAS  PubMed  Google Scholar 

  65. Kraszpulski M, Soininen H, Helisalmi S et al. The load and distribution of betaamyloid in brain tissue of patients with Alzheimer’s disease. Acta Neurol Scand 2001; 103: 88–92.

    Article  CAS  PubMed  Google Scholar 

  66. Fratiglioni L, Viitanen M, von Strauss E et al. Very old women at highest risk of dementia and Alzheimer’s disease: incidence data from the Kungsholmen Project, Stockholm. Neurology 1997; 48: 132–8.

    Article  CAS  PubMed  Google Scholar 

  67. Andersen K, Launer LJ, Dewey ME et al. Gender differences in the incidence of AD and vascular dementia: the EURODEM Studies. EURODEM Incidence Research Group. Neurology 1999; 53: 1992–7.

    Article  CAS  PubMed  Google Scholar 

  68. Breitner JC, Wyse BW, Anthony JC et al. APOE-epsilon 4 count predicts age when prevalence of AD increases, then declines: the Cache County Study. Neurology 1999; 53: 321–31.

    Article  CAS  PubMed  Google Scholar 

  69. Bretsky PM, Buckwalter JG, Seeman TE et al. Evidence for an interaction between apolipoprotein E genotype, gender, and Alzheimer disease. Alzheimer Dis Assoc Disord 1999; 13: 216–21.

    Article  CAS  PubMed  Google Scholar 

  70. Tang, MX, Jacobs D, Stern Y et al. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 1996; 348: 429–32.

    Article  CAS  PubMed  Google Scholar 

  71. Kawas C, Resnick S, Morrison A et al. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer’s disease: The Baltimore Longitudinal Study of Aging. Neurology 1997; 48: 1517–21.

    Article  CAS  PubMed  Google Scholar 

  72. Schuessel K, Leutner S, Cairns NJ, Müller WE, Eckert A. Impact of gender on upregulation of antioxidant defence mechanisms in Alzheimer’s disease brain. J Neural Transm 2004; 111: 1167–82.

    Article  CAS  PubMed  Google Scholar 

  73. Maryuma K, Ikeda S, Ishichara T, Allshop D, Yanagisava N. Immunohistochemical characterisation of cerebrovascular amyloid in 46 autopied cases using antibodies to β protein and cystatin C. Stroke 1990; 31: 397–403.

    Article  Google Scholar 

  74. Tórsdóttir G, Sveinbjörnsdóttir S, Kristinsson J, Snaedal J, Jóhannesson T. Ceruloplasmin and superoxide dismutase (SOD1) in Parkinson’s disease: A follow-up study. J Neurol Sci 2006; 241: 53–8.

    Article  PubMed  Google Scholar 

  75. Wooten GF, Currie LJ, Bovbjerg VE, Lee JK, Patrie J. Are men at greater risk for Parkinson’s disease than women? J Neurol Neurosurg Psychiatry 2004; 75: 637–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Currie LJ, Harrison MB, Trugman JM, Bennet JP, Wooten GF. Postmenopausal estrogen use affects risk for Parkinson disease. Arch Neurol 2004; 61: 886–8.

    Article  PubMed  Google Scholar 

  77. Harman D. The aging process. Proc Natl Acad Sci 1981; 78: 7124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Harman D. Free radical theory of ageing: applications. Asia Pacific Heart J 1998; 7: 169–77.

    Article  Google Scholar 

  79. Knight JA. Diseases related to oxygen-derived free radicals. Ann Clin Lab Sci 1995; 25: 111–21.

    CAS  PubMed  Google Scholar 

  80. Skrzydlewska E, Sulkowska M, Makiela M. [Changes in degradation of internal cell proteins in ageing] Post Hig Med Dosw 2001; 55: 467–81 [Article in Polish].

    CAS  Google Scholar 

  81. Cuervo AM, Dice JF. Lysosomes, a meeting point of proteins, chaperones and proteases. J Mol Med 1998; 76: 6–12.

    Article  CAS  PubMed  Google Scholar 

  82. Książek K, Mikula-Pietrasik J, Olijslagers S, Jorres A, von Zglinicki T, Witowski J. Vulnerability to oxidative stress and different patterns of senescence in human peritoneal mesothelial cell strains. Am J Physiol Regul Integr Comp Physiol 2009; 296: 374–82.

    Article  Google Scholar 

  83. Massie HR, Aiello VR, Banziger V. Iron accumulation and lipid peroxidation in aging C57BL/6J mice. Exp Gerontol 1983; 18: 277–85.

    Article  CAS  PubMed  Google Scholar 

  84. Rikans LE, Hornbrook KR. Lipid cooperation, antioxidant protection and ageing. Biochim Biophys Acta 1997; 1362: 116–27.

    Article  CAS  PubMed  Google Scholar 

  85. Książk K, Wisniewska J. [The role of glucose and reactive oxygen species in the development of vascular complications of diabetes mellitus] Przegl Lek 2001; 58: 915–8 [Article in Polish].

    Google Scholar 

  86. Garip AI, Akan Z. Effect of ELF-EMF on number of apoptotic cells; correlation with reactive oxygen species and hsp. Acta Biol Hung 2010; 6: 158–67.

    Article  Google Scholar 

  87. Reiter RJ. The pineal gland and melatonin in relation to ageing: a summary of the theories and of the date. Exp Gerontol 1995; 30: 199–212.

    Article  CAS  PubMed  Google Scholar 

  88. Navarro A, Sanchez Del Pino MJ, Gomez C, Peralta JL, Boveris A. Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in ageing mice. Am J Physiol Regul Integr Comp Physiol 2002; 282: 985–92.

    Article  Google Scholar 

  89. Demaree SR, Lawler JM, Linehan J, Delp MD. Ageing alters aortic antioxidant enzyme activities in Fischer-344 rats. Acta Physiol Scand 1999; 166: 203–8.

    Article  CAS  PubMed  Google Scholar 

  90. Meng Q, Wong YT, Chen J, Ruan R. Age-related changes in mitochondrial function and antioxidative enzyme activity in fischer 344 rats. Mech Ageing Dev 2007; 128: 286–92.

    Article  CAS  PubMed  Google Scholar 

  91. Chen Ch, Brown-Borg HM, Rakoczy SG, Thompson LV. Muscle disuse: adaptation of antioxidant systems is age dependent. J Gerontol A Biol Sci Med Sci 2008; 63: 461–6.

    Article  PubMed  Google Scholar 

  92. Leeuwenburgh C, Fiebig R, Chandwaney R, Ji LL. Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems. Am J Physiol 1994; 267: 439–45.

    Google Scholar 

  93. Mousa HM, Omer OH, Ali BH, Al-Wabel N, Ahmed1 SM. Antioxidant levels in tissues of young and adult camels (Camelus dromedarius). J Physiol Biochem 2006; 62: 213–8.

    Article  CAS  PubMed  Google Scholar 

  94. Gorecka R, Sitarska E, Klucinski W. Antioxidant parameters of horses according to age, sex, breed and environment. Pol J Vet Sci 2002; 5: 209–16.

    CAS  PubMed  Google Scholar 

  95. Gatellier P, Mercier Y, Renerre M. Effect of diet finishing mode (pasture or mixed diet) on antioxidant status of Charolais bovine meat. Meat Sci 2004; 67: 385–94.

    Article  CAS  PubMed  Google Scholar 

  96. Albera E, Kankofer M. The comparison of antioxidative/oxidative profile in colostrum, milk and blood of early post-partum cows during their first and second lactation. Reprod Dom Anim 2010; 45: 417–25.

    Article  Google Scholar 

  97. Gianni P, Jan KJ, Douglas MJ, Stuart PM, Tarnopolsky MA. Oxidative stress and the mitochondrial theory of aging in human skeletal muscle. Exp Gerontol 2004; 39: 1391–400.

    Article  CAS  PubMed  Google Scholar 

  98. Bejma J, Ji LL. Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 1999; 87: 4.

    Article  Google Scholar 

  99. Valle’e M, George O, Vitiello S, Le Moal M, Mayo W. New insights into the role of neuroactive steroids in cognitive aging. Exp Gerontol 2004; 39: 1695–704.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Giergiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giergiel, M., Lopucki, M., Stachowicz, N. et al. The influence of age and gender on antioxidant enzyme activities in humans and laboratory animals. Aging Clin Exp Res 24, 561–569 (2012). https://doi.org/10.1007/BF03654838

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03654838

Key words

Navigation