Skip to main content
Log in

SURE-Optimal Bandwidth Selection in Nonparametric Regression

  • Articles
  • Published:
Sampling Theory in Signal and Image Processing Aims and scope Submit manuscript

Abstract

An important problem in nonparametric regression is to control the amount of smoothing in the regression, which in turn is specified by the so-called bandwidth parameter. The problem has received much attention in the statistics literature, leading to a variety of methods for bandwidth selection. Most methods arrive at an empirical risk estimate by partitioning the data into two sets: training samples and testing samples. The training samples are used to compute a family of regression functions indexed by their bandwidths. The optimal bandwidth is chosen as the value for which the regression function minimizes the quadratic empirical risk on the training sample. In this paper, we propose to select the bandwidth within the framework of minimum mean-squared-error (MMSE) estimation. Since the oracle MSE cannot be computed in practice due to non-availability of the ground truth, we propose to employ an unbiased estimator of the MSE. Specifically, we rely on the Stein’s unbiased risk estimator (SURE) to optimize for the bandwidth parameter. We address the problems of kernel regression and local polynomial regression (LPR) within a common framework and show that SURE provides a good approximation to the oracle MSE, especially with larger data lengths, thus helping us in arriving at the MMSE solution. As a specific application, we address the problem of signal reconstruction from noisy nonuniform samples in both one and two dimensions. For a smooth progression of the exposition, we also provide certain results in the uniform sampling case, before proceeding with the case of nonuniform sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Benazza-Benyahia and J.-C. Pesquet, Building Robust Wavelet Estimators for Multicomponent Images Using Stein’s Principle, IEEE Trans. Image Process., 14, 1814–1830, 2005.

    Article  MathSciNet  Google Scholar 

  2. T. Blu and F. Luisier, The SURE-LET Approach to Image Denoising, IEEE Trans. Image Process., 16, 2778–2786, 2007.

    Article  MathSciNet  Google Scholar 

  3. M. Brockmann, T. Gasser, E. Herrmann, Locally Adaptive Bandwidth Choice for Kernel Regression Estimators, J. Amer. Statist. Assoc., 88, 1302–1309, 1993.

    Article  MathSciNet  Google Scholar 

  4. W. S. Cleveland, Robust Locally Weighted Regression and Smoothing Scat-terplots, J. Amer. Statist. Assoc., 74, 829–836, 1979.

    Article  MathSciNet  Google Scholar 

  5. D. L. Donoho and I. M. Johnstone, Adapting to Unknown Smoothness via Wavelet Shrinkage, J. Amer. Stat. Assoc., 90, 1200–1224, 1995.

    Article  MathSciNet  Google Scholar 

  6. Y. C. Eldar, Generalized SURE for Exponential Families: Applications to Regularization, IEEE Trans. Signal Process., 57, 471–481, 2009.

    Article  MathSciNet  Google Scholar 

  7. J. Fan and I. Gijbels, Variable Bandwidth and Local Linear Regression Smoothers, Ann. Stat., 20, 2008–2036, 1992.

    MathSciNet  MATH  Google Scholar 

  8. J. Fan and I. Gijbels, Data-Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation, J. Roy. Statist. Soc. Ser. B, 57, 371–394, 1995.

    MathSciNet  MATH  Google Scholar 

  9. J. Fan and I. Gijbels, Adaptive Order Polynomial Fitting: Bandwidth Ro-bustification and Bias Reduction, J. Comput. Graph. Statist., 4, 213–227, 1995.

    Google Scholar 

  10. J. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications, Chapman and Hall, New York, 1996.

  11. J. Fan, I. Gijbels, T-C Hu, and L-S Huang, A Study of Variable Bandwidth Selection for Local Polynomial Regression, Statistica Sinica, 6, 113–127, 1996.

    MathSciNet  MATH  Google Scholar 

  12. J. Fan, N. E. Heckman, and M. P. Wand, Local Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions, J. Amer. Statist. Assoc., 90, 141–150, 1995.

    Article  MathSciNet  Google Scholar 

  13. R. Giryes, M. Elad, and Y. C. Eldar, The Projected GSURE for Automatic Parameter Tuning in Iterative Shrinkage Methods, Appl. Comput. Harmon. Anal., 30, 407–422, 2011.

    Article  MathSciNet  Google Scholar 

  14. W. Hardle, Applied Nonparametric Regression, Cambridge University Press, Cambridge, 1990.

  15. W. Hardle, M. Muller, S. Sperlich, and A. Werwatz, Nonparametric and Semiparametric Models, Springer, New York, 2004.

  16. N. W. Hengartner and M. H.Wegkamp, Bandwidth Selection for Local Linear Regression Smoothers, J. R. Statist. Soc. B, 64, Part 4, 791–804, 2002.

  17. E. Herrmann, Local Bandwidth Choice in Kernel Regression Estimation, J. Comput. Graph. Statist., 6, 35–54, 1997.

    MathSciNet  Google Scholar 

  18. V. Katkovnik and L. Stankovic, Instantaneous Frequency Estimation Using the Wigner Distribution With Varying and Data-Driven Window Length, IEEE Trans. Signal Process., 46, 2315–2325, 1998.

    Article  Google Scholar 

  19. H. Kishan and C. S. Seelamantula, SURE-Fast Bilateral Filters, Proc. IEEE Intl. Conf. on Acoust., Speech and Signal Process., 1129–1132, March 2012.

  20. F. Luisier, T. Blu, and M. Unser, A New SURE Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding, IEEE Trans. Image Process., 16, 593–606, 2007.

    Article  MathSciNet  Google Scholar 

  21. F. Luisier, C. Vonesch, T. Blu, and M. Unser, Fast Interscale Wavelet Denoising of Poisson-Corrupted Images, Signal Process., 90, 415–427, 2010.

    Article  Google Scholar 

  22. N. R. Muraka and C. S. Seelamantula, A Risk-Estimation-Based Comparison of Mean Square Error and Itakura-Saito Distortion Measures for Speech Enhancement, in Proc. Interspeech, Florence, 349–352, 2011.

  23. J.-C. Pesquet and D. Leporini, A New Wavelet Estimator for Image De-noising, in Proc. Sixth Int. Conf. Image Process. and Its Applicat., Dublin, 249–253, 1997.

  24. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, 2007.

  25. S. Ramani, T. Blu, and M. Unser, Monte Carlo SURE: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms, IEEE Trans. Image Process., 17, 1540–1554, 2008.

    Article  MathSciNet  Google Scholar 

  26. L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear Total Variation Based Noise Removal Algorithms, Physica D, 60, 259–268, 1992.

    Article  MathSciNet  Google Scholar 

  27. D. Ruppert and M. P. Wand, Multivariate Locally Weighted Least Squares Regression, Ann. Stat., 22, 1346–1370, 1994.

    MathSciNet  MATH  Google Scholar 

  28. A. Savitzky and M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639, 1964.

    Article  Google Scholar 

  29. R. W. Schafer, What is a Savitzky-Golay Filter?, IEEE Signal Process. Mag., 28, 111–117, 2011.

    Article  Google Scholar 

  30. W. R. Schucany, Adaptive Bandwidth Choice for Kernel Regression, J. Amer. Statist. Assoc., 90, 535–540, 1995.

    Article  MathSciNet  Google Scholar 

  31. B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York, 1986.

  32. C. M. Stein, Estimation of the Mean of a Multivariate Normal Distribution, Ann. Stat., 9, 1135–1151, 1981.

    Article  MathSciNet  Google Scholar 

  33. C. J. Stone, Consistent Nonparametric Regression, Ann. Stat., 5, 595–620, 1977.

    Article  MathSciNet  Google Scholar 

  34. H. Takeda, S. Farsiu, and P. Milanfar, Kernel Regression for Image Processing and Reconstruction, IEEE Trans. Image Process., 16, 349–366, 2007.

    Article  MathSciNet  Google Scholar 

  35. P. Vieu, Nonparametric Regression: Optimal Local Bandwidth Choice, J. Roy. Statist. Soc. Ser. B, 53, 453–464, 1991.

    MathSciNet  MATH  Google Scholar 

  36. G. Wahba, “Spline models for observational data,” Chapter 4, 45–65, CBMS-NSF Regional Conf. Series in Appl. Math. Soc. Ind. Appl. Math., Philadelphia, PA, 1990.

  37. M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman and Hall, New York, 1995.

  38. J. Zhang and A. Liu, Local Polynomial Fitting Based on Empirical Likelihood, Bernoulli, 9, 579–605, 2003.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, S.R., Seelamantula, C.S. SURE-Optimal Bandwidth Selection in Nonparametric Regression. STSIP 11, 133–163 (2012). https://doi.org/10.1007/BF03549553

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03549553

Key words and phrases

Navigation