Skip to main content
Log in

Optical-Thermal Determination Of Cn2 in the Lower Atmosphere

  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Different experimental methods are available for the measurement of atmospheric refractive index structure constant (Cn2), which is an index of atmospheric turbulence to be known prior to an accurate estimation of any atmospheric quantity using remote sensing techniques. An experimental setup that combines an optical scientillometer and two separate differential micro thermometers for determining atmospheric Cn2 has been developed at the Indian Institute of Tropical Meteorology (IITM), Pune, India. The results of the experiments performed during the months of April, November and December 1991 are discussed. The temporal variations in Cn2 measured simultaneously from both optical and thermal techniques showed correspondence and correlated by a scale factor, Cn(optical) = Cn (thermal)×0.89+6.45×10-7m-1/3. The order of Cn2 was found to vary from 10-15 to 10-12 m10-2/3 exhibiting maximum value during afternoon hours and minimum during the periods fo just after sunrise and sunset. The details of the experiment and performance of the techniques are presented. The variations in Cn2 observed from both methods are explained in relation to thermal stratification of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Portman, E. Ryznar and A. A. Waqif, U. S. Cold Regions Research and Engineering Laboratory, Res. Rep. 225, 77 (1968).

    Google Scholar 

  2. G. R. Ochs. R. R. Bergman and J. R. Snyder, J. Opt. Soc. Am., 59, 231 (1969).

    Article  Google Scholar 

  3. J. A. Dowling and P.M. Livingston, J. Opt. Soc. Am., 63, 846 (1973).

    Article  ADS  Google Scholar 

  4. J. E. Pearson, J. Opt. Soc. Am., 65, 938 (1975).

    Article  ADS  Google Scholar 

  5. P. C.S. Devara, P. Ernest Raj and S. Sharma, J. Inst. Elect. Telecom. Engrs., 38, 6 (1992).

    Google Scholar 

  6. J. C. Wyngaard, Y. Izumi and S. A. Collins, J. Opt. Soc. Am., 12, 1646 (1971).

    Article  ADS  Google Scholar 

  7. V. I. Tatarskii, Wave Propagation in a Turbulent Medium, Dover, New York, 285 (1961).

    Google Scholar 

  8. B. B. Balseley and K. S. Gage, Pure and Appl. Geophys., 118, 452 (1980).

    Article  ADS  Google Scholar 

  9. M. L. Wesley, J. Appl. Meteor., 15, 43 (1976).

    Article  ADS  Google Scholar 

  10. P. Ernest Raj, S. Sharma, P. C. S. Devara and G. Pandithurai, J. Appl.Meteor., 32, 1161 (1993).

    Article  Google Scholar 

  11. D. J. Portman, F. C. Elder, E. Ryznar and V. E. Noble, J. Geophys. REs., 67, 3223 (1962).

    Article  ADS  Google Scholar 

  12. G. D. Nostrom, K. S. Gage and W. L. Ecklund, J. Geophys. Res., 91, 6722 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandithurai, G., Sharma, S., Raj, P.E. et al. Optical-Thermal Determination Of Cn2 in the Lower Atmosphere. J Opt 22, 68–72 (1993). https://doi.org/10.1007/BF03549251

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03549251

Navigation