Skip to main content
Log in

Optical Pumping for Alkali Gas Cell Frequency Standard

  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This paper reviews briefly the optical pumping phenomenon and its use for the development of alkali vapour frequency standards. In particular the discussion will be limited to the development of Rubidium Atomic Frequsncy Standard, the atomic levels used being the hyperfine levels of the ground state of 87Ro isotope 52S ½ F=2 and 52S ½ F=l with mF= 0

In general, resonant light is used for the purpose of creating the population imbalance in the atomic sublevels. Techniques for efficient optical pumping in 87Rb isotope is discussed. The technique employs the excitation of electrons from 52S ½, F= 1 level to the optical excited 5 P levels. Electrons from optical 5 P levels decay spontaneously to both the ground levels, progressively leading to a net over-population in the upper lying ground level.

The effect of pumping light on causing frequency shift in standard is discussed. The frequency shift is caused by two processes, called the real and virtual. In the former, absorption of non-symmetric resonant pumping light by the ground state atoms of the alkali metal leads to the shift in the atomic state. Also, the electric vector of the pumping light causes Stark splitting.

In the virtual process even the non-resonant light interacts with the atomic ensemble. The atomic ensemble absorbs the photon of the incident light for the time which is less than the time corresponding to the energy discrepancy between the incident light and the radiation involved. In conclusion, the performance of the frequency standard is evaluated with reference to the light shifts thus caused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harish Bahadur and R. Parshad, Jour. Sci. and Ind. Res. 33, 561–69, Nov. (1974).

    Google Scholar 

  2. H. W. Hellwig, Proc. IEEE 63, 212–229. (1975).

    Article  ADS  Google Scholar 

  3. A. O. Me Coubrey, Proe. IEEE 54, 116–135 (1966).

    Article  Google Scholar 

  4. R. C. Mockler and J.A. Barnes, Lecture notes topic 4 for Time and Frequency, NB; Seminar on Electromagnetic Measurements and Standards, 7–18 Aug. 1967.

    Google Scholar 

  5. N. F. Ramsey, IEEE Tram. Inst. and Meas. IM-21. 90–96, (1972).

    Google Scholar 

  6. L. Essen, “Atomic Standard of Time” ALTA FREQUENZA, XL, 8, pp. 679–683, 1971.

    ADS  Google Scholar 

  7. R. E. Beehler, “A Historical Review of Atomic Frequency Standards”, Proc. IEEE, 55, 6, pp. 792–805, June, 1967.

    Article  Google Scholar 

  8. H. W. Hellwig, “Frequency Standards and Clocks: A Tutorial Introduction”, N. B. S. Tech. Note 616, 1972 and revised in March. 1974.

    Google Scholar 

  9. J. P. GORDEN, H. J. ZEIGER and C. H. TOWNES, “The Maser-New Type of Amplifier, Frequency Standard and Spectrometer” Phys. Rev. 99, 1264–1274, (1955).

    Article  ADS  Google Scholar 

  10. R. E. BEEHLER. R. C. MOCKLER and J. M. RICHARDSON, “Cesium Beam Atomic Time and Frequency Standards” Metrologia 1, 3, pp. 114–131, July, 1965.

    Article  ADS  Google Scholar 

  11. R.E. BEEHLER, “Cesium Atomic Beam Frequency Standards-A Survey of Laboratory Standards Developments from 1949-1971” Proc. 25th Annual Frequency Control Symposium Fort Monmouth, N. J. 07703 pp. 297–308, Apiil. 1971.

    Article  Google Scholar 

  12. A. KASTLER, “Optical Methods of Atomic Orientation and of Magnetic Resonance” Jour. Optical Society of America 47, pp. 460–465, 1957.

    Article  ADS  Google Scholar 

  13. W. FRANZEU and A. G. EMSLIE, “Atomic Orientation by Optical Pumping” Phys. Rev., 108, 1453–1458, (1957).

    Article  ADS  Google Scholar 

  14. R. H. DICKE, T. R. CARVER, C. O. ALLEY and N. S. vander VEN, “Investigation of ihe Effect of Gas Collisions and Optical Pumping on the Breadth of Spectral Lines-Microwave Atomic Oscillator Using the Hyperfine Transition of 87 Rb” Eighth Quarterly, Report, Princeton University, Princelon, N. J. Contract DA-36-039 SC-70 147, June 1, 1957 to Sept. 30, 1957.

    Google Scholar 

  15. R. H. DICKE, “The Effect of Collisions upon the Dop-pler width of Spectral Lines” Phys. Rev. 89, 472–473, Jan., 1953.

    Article  ADS  Google Scholar 

  16. H. KOPFERMANN, cited in “Nuclear Moments” Pure and Applied physics Series, Vol. 2, edited by E.E. Schneider (Academic Press Inc., New York) 1948.

  17. P. L. BENOER, F. C. BEATY and A R. CHI, “Optical Detection of narrow 87Rb Hyperfine Absorption Lines” Phys. Rev. Letters, 1, 311–313, Nov., 1958.

    Article  ADS  Google Scholar 

  18. M. ARDITI and T. R. CARVER, “Pressure, Light and Temperature Shifts in Optical Detection of O-O Hyper-fine Resonance of Alkali Metals Phys. Rev. 124, 800–809, Nov., 1961.

    Article  ADS  Google Scholar 

  19. P. Dovidovits and R. Novick, “The Optically Pumped Rubidium Maser” Proc. IEEE 54, 155–170, (1966).

    Article  Google Scholar 

  20. P. Davidovits, “An Optically Pumped 87Rb Maser Oscillator” Appl. Phys. Lett. 5, 15–16. (1964)

    Article  ADS  Google Scholar 

  21. P. Daviodbvits and W. A. Stern, “The Effects of Optical Pumping on the 87Rb Maser Oscillator” Proc. 19th Annual Symp. Frequency Control, 417–435, (1965).

    Chapter  Google Scholar 

  22. R. Novick. W. Happer and W. A. Stern, “High Power Maser Atomic Frequency Standards” Proc, 20th Annual Frequency Control Symposium, (1966).

    Google Scholar 

  23. R. Novick, W. Happer and W. A. Stern, “High Power Maser Atomic Frequency Control Symposium 365–369, (1965).

    Google Scholar 

  24. W. A. Stern, W. Happer and R. Novick, “Stark-Filtered Intensity—Pumped Maser Atomic Frequency Standards” Proc. 20th Annual Frequency Control Symposium—(1966).

    Google Scholar 

  25. P. Davidovis and N. Knable, “The Efficiency of a 85Rb filter in Optical Pumping of 87Rb” Rev. Sci. Instr,. 35, 857–58, July (1964).

    Article  ADS  Google Scholar 

  26. P. Davidovis and W. A. Stern, “A Field Independent Optically Pumped 87Rb Maser Oscillator” Appl. Phys. Lett. 6, 20–21, Jan’ 1965.

    Article  ADS  Google Scholar 

  27. R. Noviek. P. Davidovits, W. Happer, W. A. Stern, “Light Shift, Light Modulation and Phae Pulling in the Optically Pumped Rubidium Maser” Conference Proceedings, Physics of the Quantum Electronis, Flag-staff. Arzona, June 17–28, 626–634, (1968).

    Google Scholar 

  28. W. A. Stern and R. Novick, “An Optically Pumped 87Rb Maser Frequency Standard” Proc. 23 Symp. on Frequency Control, 271–273, (1969).

    Google Scholar 

  29. W. A. Stern, “The 85Rb Maser” Ph. D. Thesis, Columbia University, (1977).

    Google Scholar 

  30. W. A. Stern and R. Novick. “A Field-Independent Optically Pumped 86Rb Maser Oscillator” Appl. Phys. Letters. 17, 216–217 (1970).

    Article  ADS  Google Scholar 

  31. William A. Stern and Robert Novick, “Light and Buffer Gas Frequency Shifts in the 85 Rb- Maser Frequency Standard,” IEEE Trans. Instrumentation and Measurement, 1M-21, 99–105, May, (1972).

    Article  Google Scholar 

  32. W. A. Stern and R. Novick. “Further Results on 85Rb Maser Frequency Standard” Proc. 26 ih Annual Symp. Frequency. Control, 223–224, (1972).

    Google Scholar 

  33. H. Tanigawa, N. Kumarochi, K. Iga and H. Fukuyo, “Light Intensity Temperature Characteristics of Rubi-diurn Lamp for Optical Pumping” Bull. Tokyo Inst, Technology No. 95, 23–31 (1969).

    Google Scholar 

  34. N. Kumarochi, H. Tanigawa. K- Iga, and H. Fukuyo, “Observation of the Hyperfine Spestrum of 87Rb D1, Line for Optical Pumping” Bull, Tokyo Inst. Tech. No. 101, 63–68, (1970).

    Google Scholar 

  35. H. Fukyo. K. Iga, N. Kumarochi and H. Tanigawa, “Temper ture Dependence of Hyperfine Spectrum of Rb D1 Line” Jap, Jour. Appl. Phys. 9, 729–734 (1970).

    Article  ADS  Google Scholar 

  36. H. Fukuyo, K. Iga, H. Tanigawa, H- Ishikawa, “Theoretical Consideration on the Signal Intensity in Optical Pumping and Optical Detection System” Bull. Tokyo lnst’. Tech. No. 106, 91–100, (1971).

    Google Scholar 

  37. H. Fukuyo, K. Iga, N. Kumarochi, I. Matsuda and H. Ishikawa, “Fundamental Characteristics and Frequency Stability in the Early Stage of a Labhratory made Rb Atomic Oscillator Bull. Tokyo Inst. Tech. No. 107, 75–88, (1971).

    Google Scholar 

  38. H. Fukuyo. K. Iga and N. Kumarochi, “Spectral Characteristics of 87Rb Lamps Containing Different Carrier Gases” Bull. Tokyo Inst. Tech. No. 113, 67–72, (1972).

    Google Scholar 

  39. H. Ishikawa. I. Matsuda, N. Kumarochi, K. Iga and H. Fukuyo, “The Frequency Stability and Noise of Passice Rb Standard” Bull. Tokyo Inst. Tech. No. 118, 17–32, (1973).

    Google Scholar 

  40. T. Yuuki, H. Uchida. Y. Sato, “Characteristics of Rubidium Frequency Standards for Trial Manufacture” (in Japanese) 1969, Joint Conv. of four Electr. Inst. No. 2073. (1969).

  41. H. Uchida, Y. Sato, “Ch iracteristics of Rubidium Frequency Standard for Trial Manufacture (11)” (in Jananese), 1970 Joint Conv. of Four Electr. Inst. No. 1864 (1970).

  42. H. Uchida. Y. Sato, Characteristics of Rubidium Frequency Standard for Trial Manufacture (III),” (in Japanese), 1970 National Conv. of 1ECE Japan, No. 836, (1970).

  43. T. Yuuki, H. Uchida, Y. Sato, “Various Characteristics of Rubidium Atomic Oscillator” (in Japanese), 1970 National Conv. of Inst. Television Eng. Japan, No. 5–15. (1970).

  44. U. Uchida, Y. Sato, “Characteristics of Rubidium Frequency Standard for Trial Manufacture (IV), (in Japanese), 1971 National Conv, of IECE, Japan, No. 958 (1971).

  45. T. Yuuki, H. Uchida, Y. Sato, “Experiments of Gas Cell Type Rubidium Atomic Oscillator” (in Japanese), Committee on Atomic Oscillators, Inst. Electr. Eng. Japan No. 22-2.

  46. Y. Sato. H. Kumamto, H. Oyamada and H. Uchida, “Automatic Frequency Controlled Rubidium Frequency Standard” Proc. 26th Annual Symp. Frequency Control, 211–215, (1972).

    Chapter  Google Scholar 

  47. T. Yuuki, H. Uchida, Y. Sato, H. Kumamoto.’ H. Oyamada, H. Kawaji and K. Kondo, “Rubidium Frequency Standard” NEC Research and Development No. 31, 42–56 Oct., 1973.

    Google Scholar 

  48. M. Arditi and T. R. Carver. “The Principles of the Double Resonance Method Applied to Gas Cell Frequency Standards” Proc. IEEE. SI, 190–202 (1963).

    Google Scholar 

  49. M. Arditi and T. R. Carver, “Atomic Clock Using. Microwave Pulse-Coherent Techniques” IEEE. Trans. Inst. and Meas., IM-13, 146–156. (1964).

    Google Scholar 

  50. M. Arditi and T. R. Carver, “Regenerative Rubidium Ma-ser Oscillator” Jour. Appl. Phys. 36, 443–448 (1965).

    Article  ADS  Google Scholar 

  51. J. Viennet, C. Audion and M. Desaintfuscien, “Cavity Pulling in Passice Frequency Standards” IEEE Trans, Instrumentation and Measurement IM-21, 204–209, Aug., (1972).

    Google Scholar 

  52. M. Arditi and Pierre Cerez, “Hyperfine Structure Separation of the Ground State of 87Rb Measured with an Optically Pumped Atomic Team” IEEE Trans. and Meas. 391–395, Nov., 1972.

    Google Scholar 

  53. F. Hartmann, “Elude ge‘ne’rate de I amplification maser par une vapeur alcaline,” J. Phys. (Paris) 28A, 288, (1967).

    Article  Google Scholar 

  54. F. Hartmann “Frequency Stability of the Regenerative Rubidium Maser Oscillators” Phys. Letters, 28, 193–194, Nov’(1968).

    Article  ADS  Google Scholar 

  55. G. Busca, M. Tetu and J. Vanier “Light Shift and Light Broadening in the B7Rb Maser” Canadian Jour. Physics 51, 1379–1387, (1973).

    Article  ADS  Google Scholar 

  56. M. Tessieret and J. Vanier “The ‘orie du Maser au Rubidium 87’” Canadian J. Physics 49, 2680–2689, (1971).

    Article  ADS  Google Scholar 

  57. J. Vanier “Short Term Stability of 87Rb Maser” Proc. 26th Annual Frequency Control Symposium, 1972.

    Google Scholar 

  58. J. Vanier “Optical Pumping as a Relaxation Process” Canadian J. Phys. 47, 1461–1466, (1969).

    Article  ADS  Google Scholar 

  59. G. Missout and J. Vanier “Some Aspects of the Theory of Passive Rubidium Frequency Standards” Canad. J. Physics, 53, 1030–1043, (1975).

    Article  ADS  Google Scholar 

  60. J. Vanier “Relaxation in Rubidium-87 and the Rubidium Maser” Phys. Rev. 168, 129–149 (1968).

    Article  ADS  Google Scholar 

  61. M. E. Packardan J. B. E. Swartz “The Optically Pumped Rubidium Vapour Frequency Standard” IEEE Trans. Instrumentation I-11, 215–225 (1962).

    Google Scholar 

  62. P. Davidovits and N. Knable “Studies’of a high gain puhed 87Rb microwave maser” J. Appl. Phys. 35. p. 3042 (1964).

    Article  ADS  Google Scholar 

  63. J. P. Barrat and C. Cohen Tannoudji “Elude1 Pompage Optique dans le formalisme de la matrice densite” Jour, de Physique Radium 22, 329–336 (1961).

    Article  MATH  Google Scholar 

  64. A. Kastler “Displacement” of Energy Levels of Atoms by Light” Jour. Opt. Soc. America, 53, 902–910 Aug. (1963).

    Article  ADS  Google Scholar 

  65. A. Kastler “Modification of Atoms by a Radiation Bath” Proc. The Robert A Welch Foundation Conferences on Chemical Research, Dec. 4–6, (1967) Houston. Texas, p. 153–163.

    Google Scholar 

  66. B. S. Mathur, H. Tang and W. Happer “Light Shifts in the Alkali Atoms” Phys, Rev., 171, 11–19, (1963).

    Article  ADS  Google Scholar 

  67. B. S. Mathur, H. Y. Tang and W. Happer “Light Propagation in Optically Pumped Alkali Vapours” Phys. Rev. A 2, 648–660 (1970).

    Article  ADS  Google Scholar 

  68. A. Kastler. “Virtual Interaction between Atoms and Electromagnetic Fields” K. S. Krishnan Memorial Lecture at National Physical Laboratory, New Delhi, 24th March, 1972.

    Google Scholar 

  69. A. Khadjavi, A. Lurio and W. Happer, “Stark Effect in the Excited States of Eb, Cs, Cd, and Hg” Phys. Rev. 167, 128–135, (1968).

    Article  ADS  Google Scholar 

  70. S. Haroche, C. Cohen-Tannoudji, C. Audoin, J. P. Schermann, “Modified Zeeimo Hyperfine Spectra Observed in’H’and 87Rb Ground States Interacting with a Non-Resonatn r-f field” Phys. Rev. Lett. 24, 861–864, (1970).

    Article  ADS  Google Scholar 

  71. G. Busca, M. Tetu & J. Vanier. “Light Shift Effects in the 87Rb Maser” Appl. Phys. Lett. 23, 395–396, (1973).

    Article  ADS  Google Scholar 

  72. W. Happer. “Optical Pumping” Rev. Mod. Phys. 44, 169–249, (1972).

    Article  ADS  Google Scholar 

  73. W. Happer, “Light Propagation and Light shifts in Progress in Quantum Electronics Alkali Atoms” (Pergamon Press, Oxford), 1971. Vol. 1, p. 51.

    ADS  Google Scholar 

  74. R. Gupta. S. Chang. C. Tai. W. Happer, “Cascade Radio Frequency Spectroscopy of Excited S and D States of Rubidium; Anomalous D-State Hyperfine Structure” Phys. Rev. Lett. 29, 695–698 (1972).

    Article  ADS  Google Scholar 

  75. R. Gupta, W. Happer, L. K. Lam and S. Svanberg “Hyperfine-Structure Measurements of Excited S State of the Stable Isotopes of Potassium, Rubidium and Cisium by Cascade Radio-Frequency Spectroscopy” Phys. Rev. A 8, 2792–2810, Dec, 1973.

    Article  ADS  Google Scholar 

  76. R. Gupta, S. Chang and W. Happer “Cascade-Decoupling Measurements of Excited S. State Hypertine Structures of Potassium, Rubidium and Cesium” Phys. Rev. A. 6. 529–543 (1972).

    Article  ADS  Google Scholar 

  77. W. Happer and B. S. Mathur “Off-Resonant Light as a Probe of Optically Pumped Alkali Various” Phys. Rev. Lett. 18, 577–580 (1976).

    Article  ADS  Google Scholar 

  78. W. Happer and B. S. Mathur “Coherent Detection of a New Type of Optical Double-Quantum Transition” Phys. Rev. Lett. 18, 727–792 (1967).

    Article  ADS  Google Scholar 

  79. H. Tang and W. Happer “Parametric Frequency Conversion of Resonance Radiation in Optically Pumped Rubidium 87-Vapour” Phys. Rev. Lett. 24, 551–554 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahadur, H., Parshad, R. Optical Pumping for Alkali Gas Cell Frequency Standard. J Opt 5, 59–67 (1976). https://doi.org/10.1007/BF03548969

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03548969

Navigation