Skip to main content
Log in

An Elegant State Transition Matrix

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The analytic Keplerian 6 × 6 Earth Centered Inertial state transition matrix developed by Goodyear, Battin, and other mathematicians is well known. The primary objectives of this paper are to present a relatively simple formulation of the Keplerian state transition matrix, and to show that the higher-order secular terms associated with the state transition matrices of Goodyear and Battin can be eliminated. Analytic and numerical results indicate that the concern about these unbounded secular terms for numerical integration is not warranted. Comparison of Keplerian, Vinti, and numerical state transition matrices in the Hill-Clohessy-Wiltshire coordinate system (local-vertical coordinate system) further supports this contention since the two secular elements of the Keplerian state transition matrix match closely with those of the Vinti and numerical state transition matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BATTIN, R. H. An Introduction to The Mathematics and Methods of Astrodynamics, American Institute of Aeronautics and Astronautics, Education Series, New York, 1987.

    Google Scholar 

  2. DANBY, J. M. A., and BURKARDT, T. M. “The Solution of Kepler’s Equation, I,” Celestial Mechanics, Vol. 31, 1983, pp. 95–107.

    Article  Google Scholar 

  3. BURKARDT, T. M., and DANBY, J. M. A. “The Solution of Kepler’s Equation, II,” Celestial Mechanics, Vol. 31, 1983, pp. 317–328.

    Article  Google Scholar 

  4. ODELL, A. W., and GOODING, R. H. “Procedures for Solving Kepler’s Equation,” Celestial Mechanics, Vol. 38, 1986, pp. 307–334.

    Article  Google Scholar 

  5. CONWAY, B. A. “An Improved Method due to Lagurerre for the Solution of Kepler’s Equation,” Celestial Mechanics, Vol. 39, 1986, pp. 199–211.

    Article  Google Scholar 

  6. DANBY, J. M. A. “The Solution of Kepler’s Equation, III,” Celestial Mechanics, Vol. 40, 1987, pp. 303–312.

    Article  Google Scholar 

  7. STUMPFF, P. “The General Kepler Equation and its Solutions,” Celestial Mechanics, Vol. 43, 1988, pp. 211–222.

    Article  MathSciNet  Google Scholar 

  8. TAFF, L. G., and BRENNAN, T. A. “On Solving Kepler’s Equation,” Celestial Mechanics and Dynamical Astronomy, Vol. 46, 1989, pp. 163–176.

    Article  MathSciNet  Google Scholar 

  9. MIKKOLA, S. “A Cubic Approximation for Kepler’s Equation,” Celestial Mechanics, Vol. 40, 1987, pp. 329–334.

    Article  Google Scholar 

  10. MARKLEY, F. L. “Kepler Equation Solver,” Flight Mechanics/Estimation Theory Symposium, 47–57, NASA Goddard Space Flight Center, Greenbelt, Maryland, 1995.

  11. NIJENHUIS, A. “Solving Kepler Equation with High Efficiency and Accuracy,” Celestial Mechanics and Dynamical Astronomy, 1991, pp. 319–330.

  12. FITZ-COY, N., and JANG, J. “Homotopy Solution of Kepler’s Equation,” Flight Mechanics/ Estimation Theory Symposium, NASA Goddard Space Flight Center, Greenbelt, Maryland, 1996, pp. 307–314.

    Google Scholar 

  13. COLWELL, P. Solving Kepler’s Equation Over Three Centuries, Willman-Bell, Richmond, Virginia, 1993.

    MATH  Google Scholar 

  14. PRUSSING, J. E., and CONWAY, B. A. Orbital Mechanics, Oxford University, New York, 1993.

  15. CHOBOTOV, V. A. (ed.), CHAO, C. C., KARRENBERG, H. K., LANG, T. L., and MIYAMOTO, J. Y. Orbital Mechanics, American Institute of Aeronautics, Education Series, New York, 1991.

    MATH  Google Scholar 

  16. GOODYEAR, W. H. “Complete General Closed-Form Solution for Coordinates and Partial Derivatives of the Two-Body Problem,” The Astronomical Journal, Vol. 70, No. 3, 1965, pp. 189–192.

    Article  MathSciNet  Google Scholar 

  17. GOODYEAR, W. H. “A General Method for the Cartesian Coordinates and Partial Derivatives of the Two-Body Problem,” IBM Federal Systems Division, NASA CR-522, Langley, Virginia, 1966.

    Google Scholar 

  18. STUMPFF, K. “Neue Formeln und Hilfstafeln zur Ephemeridenrechung,” Astr. Nach., Vol. 275, 1947, pp. 108–128.

    Article  MathSciNet  Google Scholar 

  19. SPERLING, H. “Computation of Keplerian Conic Sections,” American Rocket Society Journal, Vol. 31, 1961, pp. 660–661.

    Google Scholar 

  20. DANBY, J. M. A. Fundamentals of Celestial Mechanics, MacMillan, New York, 1962.

    Google Scholar 

  21. HERRICK, S.H. “Universal Variables,” The Astronautical Journal, Vol. 70, 1965, pp. 309–315.

    Article  MathSciNet  Google Scholar 

  22. LEMMON, W. W., and BROOKS, J. E. “A Universal Formulation for Conic Trajectories-Basic Variables and Relationships,” Rept. 3400-6019-TU000, TRW/Systems, Redondo Beach, California, 1965.

    Google Scholar 

  23. PITKIN, E. T. “Second Transitional Partial Derivatives Via Universal Variables,” Journal of the Astronautical Sciences, Vol. 13, No. 5, 1966, pp. 204–207.

    Google Scholar 

  24. SHEPPERD, S. W. “Universal Keplerian State Transition Matrix,” Celestial Mechanics, Vol. 35, 1985, pp. 129–144.

    Article  Google Scholar 

  25. KOCHI, K. C. “Error Parameters and Error Propagation Models for On-Orbit Navigation and Guidance Analyses,” Rockwell Internal Letter No. D/383-350-79-003, Rockwell International, Downey, California, January 1979.

    Google Scholar 

  26. DER, G. J. “An Universal Error Propagation Model for On-Orbit Navigation and Guidance Analyses,” Rockwell Internal Letter No. D/385-122-84-125 AD38, Rockwell International, Downey, California, September 1984.

    Google Scholar 

  27. BATTIN, R. H., CROOPNICK, S. R., and LENOX, J. E. “The Epoch State Navigation Filter,” Journal of Guidance and Control, Vol. 1, No. 5, 1978, pp. 359–364.

    Article  Google Scholar 

  28. BORN, G. H., CHRISTENSEN, E. J., and SEVERSIKE, L. K. “Special Perturbations Employing Osculating Reference States,” Celestial Mechanics, Vol. 9, 1974, pp. 41–53.

    Article  Google Scholar 

  29. DER, G. J. “Runge-Kutta Integration Methods for Trajectory Propagation Revisited,” AAS Paper 95–420, AAS/AIAA Astrodynamics Conference, Halifax, Canada, August 1995.

    Google Scholar 

  30. DER, G. J., and DANCHICK, R. “Analytic and Numerical Error Covariance Propagation,” AAS Paper 96–3661, AAS/AIAA Astrodynamics Conference, San Diego, California, July 1996.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Der, G.J. An Elegant State Transition Matrix. J of Astronaut Sci 45, 371–390 (1997). https://doi.org/10.1007/BF03546398

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03546398

Navigation