Skip to main content
Log in

Guaranteed Classification Performance of Multi-Spacecraft Interferometric Imaging Systems

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we quantify the effect of random noise on the probability of misclassification of images produced by multi-spacecraft interferometric imaging systems (MSIIS). We consider two metrics for the noise corrupting the image: the mean squared error (MSE) and the worst-case error (WCE). We show that these are consistent with the goal of image classification in that, as the MSE or WCE tends to zero, the probability of misclassifying an image also tends to zero. Given a feature map, i.e., a real-valued function of an image variable, we assume that classification is done by applying a threshold to the feature map. In this feature-based classification, we find bounds on the MSE and the WCE such that the probability of misclassifying the image is guaranteed to be less than some pre-specified value. We illustrate the theory through an example where the banded appearance of the image of a planet is detected. The results of this paper could be used for the reliable characterization of exo-solar planets and similar astronomical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. URL: http://origins.jpl.nasa.gov/missions/pi.html

  2. QUIRRENBACH, A. “Optical Inteferometry,” Annual Review in Astronomy and Astrophysics, Vol. 39, 2001, pp. 353–401.

    Article  Google Scholar 

  3. BORUCKI, W. J., KOCH, D. G., DUNHAM, E. W., and JENKINS, J. M. “The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Near the Habitable Zone of a Wide Range of Stars,” presented at Planets Beyond our Solar System and Next Generation Space Missions, ASP conference series, Oct. 16–18, 1996.

  4. CHAKRAVORTY, S. Design and Control of Multi-Spacecaft Interferometric Imaging Systems, Ph.D. Dissertation, The University of Michigan, Ann Arbor, MI, 2004.

    Google Scholar 

  5. GOODMAN, J. W. Introduction to Fourier Optics, McGraw Hill, Boston, MA, 1996.

    Google Scholar 

  6. FITCH, J. P. Synthetic Aperture Radar, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  7. HALE, D. D. S., et. al. “The Berkeley Infrared Spatial Interferometer: A Heterodyne Stellar Interferometer for the Mid-IR,” The Astrophysical Journal, Vol. 537, 2000, pp. 998–1012.

    Article  Google Scholar 

  8. BRECKENRIDGE, J. B. (ed.) “Amplitude and Intensity Spatial Interferometry II,” Proceedings SPIE, Vol. 2200, 1994.

  9. CORNWELL, T. J. “A Novel Principle for Optimization of the Instant Fourier Plane Coverage of Correlation Arrays,” IEEE Transactions on Antennas and Propagation, Vol. 36, No. 8, Aug. 1988, pp. 1165–1167.

    Article  Google Scholar 

  10. GOLAY, M. J. E. “Point Arrays Having Compact Non-Redundant Autocorrelations,” Journal of the Optical Society of America, Vol. 61, 1971.

  11. MOFFET, A. T. “Minimum Redundancy Linear Arrays,” IEEE Transactions on Antennas and Propagation, AP-16, 1968, pp. 172–175.

  12. SHACK, R. V., RANCOURT, J. D., and MORROW, H. “Effects of Dilution on a Six-Element Synthetic Aperture,” Applied Optics, Vol. 10, 1971, pp. 257–259.

    Article  Google Scholar 

  13. MEINEL, A. B., MEINEL, M. P., and WOOLF, N. J. “Multiple Aperture Telescope Diffraction Images,” Applied Optics and Optical Engineering, Vol. 9, Chapter 5, pp. 149–201.

    Google Scholar 

  14. HARVEY, J. E., WISSINGER, A. B., and BUNNER, A. N. “A Parametric Study of Various Synthetic Aperture Telescope Configurations for Coherent Imaging Applications,” Infrared, Adaptive, and Synthetic Aperture Optical Systems, Vol. 643, 1986, pp. 194–207.

    Article  Google Scholar 

  15. WATSON, S. M. and MILLS, J. P. “Two-Point Resolution Criterion for Multi-Aperture Optical Telescopes,” Journal of the Optical Society of America A, Vol. 5, 1988, pp. 893–903.

    Article  Google Scholar 

  16. ESO/VLT Interferometry Panel “The VLT Interferometer Implementation Plan,” VLT Report 59b, 1989.

  17. LABYRIE, A., LEMAITRE, G., and KOECHLIN, L. “The Optical Very Large Array,” Advanced Technology Optical Telescopes, Vol. 628, 1986, 323–332.

    Article  Google Scholar 

  18. HARVEY, J. E. and ROCKWELL, R. A. “Performance Characteristics of Phased Arrays and Thinned Aperture Optical Telescopes,” Optical Engineering, Vol. 27, 1988, pp. 762–768.

    Article  Google Scholar 

  19. FAUCHERRE, M., MERKLE, F., and VAKILI, F. “Beam Combination in Aperture Synthesis from Space: Field of View Limitations abd (u, v) Plane Coverage Optimization,” New Technologies for Astronomy, Vol. 1130, 1989, pp. 138–145.

    Article  Google Scholar 

  20. FITCH, J. P. and LAWRENCE, T. W “Placement of Multiple Apertures for Imaging Technologies,” Amplitude and Spatial Interferometry, Vol. 1237, 1990, pp. 61–69.

    Article  Google Scholar 

  21. DAME, L. and GUYENNE, T. D. “Study of an Optimized Configuration for Interferometric Imaging of Complex and Extended Solar Structures,” Targets for Space Based Interferometry, Vol. SP-354, 1992, 201–208.

  22. MUGNIER, L. M., ROUSSET, G., and CASSAING, F. “Aperture Configuration Optimality Criterion for Phased Array of Optical Telescopes,” Journal of the Optical Society of America, Vol. 13, No. 12, 1996, pp. 2367–2374.

    Article  Google Scholar 

  23. MUGNIER, L. M., ROUSSET, G., and CASSAING, F. “Pupil Configuration Optimality Criterion in Synthetic Aperture Optics,” Proceedings SPIE in Spaceborne Interferometry II. Vol. 2477, 1995, pp. 124–131.

    Article  Google Scholar 

  24. CASSAING, F., MUGNIER, L. M., ROUSSET, G., and SORRENTE, B. “Key Aspects in the Design of a Synthetic Aperture Optics Space Telescope for Wide Field Imaging,” Adaptive Optics and Interferometry in the 21st Century, Astronomical Society of the Pacific Conference Series, Vol. 174, 1999, pp. 245–249.

    Google Scholar 

  25. LEHMANN, E. L. Testing Statistical Hypotheses, Wiley, New York, 1959.

    MATH  Google Scholar 

  26. THEODORIDIS, S. Pattern Recognition, Academic Press, San Diego, 1999.

    MATH  Google Scholar 

  27. KASSAM, S. and POOR, H. “Robust Techniques for Signal Processing: A Survey,” Proceedings of the IEEE, Vol. 73, No. 3, Mar. 1985, pp. 433–481.

    Article  Google Scholar 

  28. MARTIN, R. and SCHWARTZ, S. “Robust Detection of a Known Signal in Nearly Gaussian Noise,” IEEE Transactions on Information Theory, IT-17, 1971, pp. 50–56.

  29. WILLETT, P. and CHEN, B. “Robust Detection of Small Stochastic Signals,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 1, Jan. 1999, pp. 15–30.

    Article  Google Scholar 

  30. ANDREWS, H. C. and HUNT, B. R. Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ, 1997.

    Google Scholar 

  31. DEMOMENT, G. “Image Reconstruction and Restoration: Overview of Common Estimation Structures and Problems,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, 1989, pp. 2024–2036.

    Article  Google Scholar 

  32. KATSAGELLOS, A. K. (ed.) Digital Image Restoration, Springer-Verlag, New York, 1991.

    Google Scholar 

  33. KATSAGELLOS, A. K. Iterative Image Restoration Algorithms,” Optical Engineering, Vol. 28, No. 7, 1989, pp. 735–748.

    Google Scholar 

  34. KUNDUR, D. and HATZINAKOS, D. “A Novel Blind Deconvolution Scheme for Image Restoration Using Recursive Filtering,” IEEE Transactions on Signal Processing, Vol. 46, No. 2, Feb. 1998.

  35. CANNON, M. Blind Deconvolution of Spatially Invariant Image Blurs with Phase,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 24, Feb. 1976, pp. 58–63.

    Article  Google Scholar 

  36. GOODMAN, J. W. Introduction to Fourier Optics, 2nd edition, McGraw Hill, New York, 1996.

    Google Scholar 

  37. KALLENBERG, O. Foundations of Modern Probability Theory, Springer, New York, NY, 1997.

    MATH  Google Scholar 

  38. STARK, H. and WOODS, J. W. Probability, Random Processes and Estimation Theory for Engineers, Prentice Hall, Englewood Cliffs, NJ, 1986.

    Google Scholar 

  39. LOEVE, M. Probability Theory, 3rd edition, D. Van Nostrand and Company, Princeton, NJ, 1962.

    MATH  Google Scholar 

  40. LUENBERGER, D. G. Optimization by Vector Space Methods, Wiley, New York, 1968.

    Google Scholar 

  41. KHALIL, H. K. Nonlinear Systems, Second Edition, Prentice Hall, NJ, 1996.

    Google Scholar 

  42. ANDERSON, T. W and BURSTEIN, H. “Approximating the Upper Binomial Confidence Limit,” Journal of the American Statistical Association, Vol. 62, Issue 319, 1967, pp. 857–861.

    Article  MathSciNet  Google Scholar 

  43. ANDERSON, T. W and BURSTEIN, H. “Approximating the Lower Binomial Confidence Limit,” Journal of the American Statistical Association, Vol. 63, Issue 324, 1968, pp. 1413–1415.

    Article  MathSciNet  Google Scholar 

  44. LUENBERGER, D. G. Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, 1984.

    MATH  Google Scholar 

  45. MATHAI, A. M. and PROVOST, S. B. Quadratic Forms in Random Variables, Marcel Dekker, New York, NY, 1992.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Chakravorty Ph.D. candidate.

Additional information

This work was supported by NASA under grant NAG5-10336. An earlier version of this paper was presented at the AIAA/AAS Space Flight Mechanics Conference, Ponce, Puerto Rico, February 9–12, 2003.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravorty, S., Kabamba, P.T. & Hyland, D.C. Guaranteed Classification Performance of Multi-Spacecraft Interferometric Imaging Systems. J of Astronaut Sci 51, 205–226 (2003). https://doi.org/10.1007/BF03546309

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03546309

Navigation