Skip to main content
Log in

Biotoxicity of mercury to Chlorella vulgaris as influenced by amino acids

  • Published:
Acta Biologica Hungarica Aims and scope Submit manuscript

Abstract

The toxicity of mercury ion, on Chlorella vulgaris, is largely influenced by amino acids. Five amino acids, namely alanine, asparagine, glutamic acid, cysteine and histidine, were added separately to the medium containing static dose of mercury. Survival (%) of the alga was reduced with the increasing concentrations of mercury. Of these five amino acids, cysteine was found to be the most effective while alanine and glutamic acid were the least effective on reducing the toxic effect of mercury on the alga measured in terms of growth, chlorophyll and protein content.

The order of detoxification was Alanine < Glutamate < Asparargine < Histidine < Cysteine. Amino acids form ligands with Hg2+ making it less toxic to the alga and produce an additional source of energy for growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnon, D. I. (1949) Copper enzymes in isolated chloroplast: Polyphenoloxidase in Beta vulgaris. Plant Physiol. Lancaster 24, 1–15.

    Article  CAS  Google Scholar 

  2. Babich, M., Stotzky, G. (1983) Influence of chemical speciation on the toxicity of heavy metals to the microbiota. In: Nriagu, J. (ed.) Advances in Environmental Science and Technology, Vol. 13. John Wiley and Sons, New York, pp. 1–16.

    Google Scholar 

  3. Baccini, P. (1983) Vom Stoffhaushalt aquatischer Ökosysteme. Zur Frage nach der chemischer Binding. Fresenius Z. Anal. Chem. 316, 575–581.

    Article  CAS  Google Scholar 

  4. Borgmann, V., Ralph, K. M. (1983) Complexation and toxicity of copper and the free metal bioassay technique. Water Res. 17, 1697–1703.

    Article  CAS  Google Scholar 

  5. Cowan, C. E., Jenne, E. A., Kinnison, R. R. (1984) A methodology for determining the toxic chemical species of copper in toxicity experiments and natural waters. In: Hemphill, D. D. (ed.) Trace Substances in Environmental Health, XVIII. University of Missori, Columbia, pp. 78–79.

    Google Scholar 

  6. De Filippis, L. F., Pallaghy, C. K. (1976) Effect of sublethal concentration of Hg2+ on Chlorella. I. Growth characteristics and uptake of metals. Z. Pflanzenphysiol. 78, 197–207.

    Google Scholar 

  7. Farrell, R. E., James, J. G., Huang, P. M. (1990) Biotoxicity of mercury as influenced by Mercury (II) speciation. Appl. Environ. Microbiol. 56, 3006–3016.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Fogg, G. E., Westlake, D. F. (1955) The importance of extracellular products of algae in fresh water. Verh. Int. Ler. Limnol. 12, 219–232.

    Google Scholar 

  9. Gerloff, G. C., Fitzgerald, G. P., Skoog, F. (1950) The isolation, purification and culture of blue-green algae. Amer. J. Bot. 37, 216–218.

    Article  CAS  Google Scholar 

  10. Hongve, D., Skogheim, O. K., Hindar, A., Abrahamsen, H. (1980) Effect of heavy metal in combination with NTA, humic acid and suspended sediment on natural phytoplankton photosynthesis. Bull. Environ. Contam. Toxicol. 25, 594–600.

    Article  CAS  PubMed  Google Scholar 

  11. Jones, G. E. (1970) Metal organic complexes formed by marine bacteria. In: Hood, D. W. (ed.) Organic Matter in Natural Waters. Inst. Mar. Sci. Alaska Occas. Pub. 1, 301–310.

    Google Scholar 

  12. Kosakowska, A., Leonard, F., Lewandowska, J. (1988) Effect of amino acids on the toxicity of heavy metals to phytoplankton. Bull. Environ. Contam. Toxicol. 40, 532–538.

    Article  CAS  PubMed  Google Scholar 

  13. Lowry, O.H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with Folin-Phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  14. Mohanty, R. C., Mohanty, L., Mohapatra, P. K. (1993) Effect of glucose, glutamate and 2-oxoglutarate on mercury toxicity to Chlorella vulgaris. Bull. Environ. Contam. Toxicol. 51, 130–137.

    Article  CAS  PubMed  Google Scholar 

  15. Mohapatra, P. K., Mohanty, R. C. (1992) Differential effect of dimethoate toxicity to Anabaena doliolum with change in nutrient status. Bull. Environ. Contam. Toxicol. 48, 223–229.

    Article  CAS  PubMed  Google Scholar 

  16. Nioeber, E., Richardson, D. H. S. (1980) The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ. Pollut. Ser. B 1, 3–26.

    Article  Google Scholar 

  17. Rai, L. C., Singh, A. K., Mallick, N. (1991) Studies on photosynthesis, the Associated Electron Transport System and some physiological variables of Chlorella vulgaris under heavy metal stress. J. Plant Physiol. 138, 419–424.

    Article  Google Scholar 

  18. Safferman, R. S., Morris, M. E. (1964) Growth characteristic of blue-green algal virus LPP1. J. Bact. 88, 771–775.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Snedecor, G. W., Cochran, W. G. (1967) Statistical methods. 6th ed. Oxford and IBH, London, p. 593.

    Google Scholar 

  20. WHO (1976) Mercury. Environmental Health Criteria 1, 8–115.

    Google Scholar 

  21. Wu, J. T., Lorenzen, H. (1984) Effect of copper on photosynthesis in synchronous Chlorella cells. Bot. Bull. Acad. Sci. 25, 125–132.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohapatra, D.K., Mohanty, L., Mohanty, R.C. et al. Biotoxicity of mercury to Chlorella vulgaris as influenced by amino acids. BIOLOGIA FUTURA 48, 497–504 (1997). https://doi.org/10.1007/BF03542959

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03542959

Keywords

Navigation