Journal of Rubber Research

, Volume 21, Issue 4, pp 293–310 | Cite as

A Review of Natural Rubber Nanocomposites Based on Carbon Nanotubes

  • Firoozeh DanafarEmail author
  • Maryam Kalantari


The original form of Natural Rubber (NR) has limited usage despite its excellent elasticity and reversible deformability. Further improvement of its undesired properties, i.e. low hardness, durability and tear resistance will allow for application of NR on a broader scale. Traditional reinforcing materials such as carbon black have indicated improvement in NR-based composites. However, the increasing range of newly emerging applications comprising polymeric composites motivates researchers to focus on developing NR-based composites with better physical properties. Many nanoscale fillers have been widely researched to attain extraordinary properties in NR based products. Among the different nanostructures, carbon nanotubes (CNTs) have been widely examined for NR modification.Addition of a tiny amount of well-dispersed CNTs to NR allows for significant improvements in physical properties of NR. Preparing nanocomposites comprising CNTs and other types of fillers also demonstrates enhancement of NR properties. Besides improvements in mechanical properties, the presence of CNTs considerably improves other properties of NR, such as thermal stability as well as electrical and thermal conductivity. However, owing to interactions between individual CNTs as well as CNTs and other components (NR or other fillers), property improvement varies depending on the type of fillers and their ratio in NR. This review summarises the reported processing conditions and property improvements in NR reinforced with CNTs as a solefiller or with other additive fillers. This paper will help to better understand the status of research on developing an NR/CNT nanocomposite and discover challenges and obstacles that need to be resolved.


Natural rubber carbon nanotubes composite polymer filler 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    VAYSSE, L., RICOBONFILS, F., THALER, PH. AND SAINTE-BEUVE, A. (2009) Natural Rubber, Chapter 9.5, RSC Green Chemistry No. 4, Sustainable Solutions for Modern Economies, Edited by Rainer Hoferr, The Royal Society of Chemistry.Google Scholar
  2. 2.
    MARK, J. E., ERMAN, B. AND EIRICH, F. R. (2005) Science and Technology of Rubber, USA and UK: Academic Press.Google Scholar
  3. 3.
    ZHAO, Q., TANNENBAUM, R. AND JACOB, K. I. (2006) Carbon Nanotubes as Raman Sensors of Vulcanization in Natural Rubber. Carbon, 44 (9), 1740–1745.CrossRefGoogle Scholar
  4. 4.
    APREM, A. S., JOSEPH, K. AND THOMAS, S. (2005) Recent Developments in Crosslinking of Elastomers. Rubb. Chem. Technol., 78 (3), 458–488.CrossRefGoogle Scholar
  5. 5.
    RAJAN, V. V., DIERKES, W. K., JOSEPH, R. AND NOORDERMEER, J. W. (2006) Science and Technology of Rubber Reclamation With Special Attention to NR-Based Waste Latex Products. Progress in Polym. Sci., 31 (9), 811–834.CrossRefGoogle Scholar
  6. 6.
    ZHANG, A., WANG, L., LIN, Y. AND MI, X. (2006) Carbon Black Filled Powdered Natural Rubber: Preparation, Particle Size Distribution, Mechanical Properties, and Structures. J. Appl. Polym. Sci., 101 (3), 1763–1774.CrossRefGoogle Scholar
  7. 7.
    LUKSAMEEVANISH, V., SEADAN, M. AND KOPOONPAT, S. (2006) Shape Factor and Carbon Black Loading Effect on FEA Prediction of Bearing Behaviour. J. Rubb. Res., 9(3), 159–177.Google Scholar
  8. 8.
    CAI, H. H., LI, S. D., TIAN, G. R., WANG, H. B. AND WANG, J. H. (2003) Reinforcement of Natural Rubber Latex Film By Ultrafne Calcium Carbonate. J. Appl. Polym. Sci., 87 (6), 982–985.CrossRefGoogle Scholar
  9. 9.
    ROSLIM, R. AND HASHIM, M. A. (2010) Effect of Filler on Physical Properties and Surface Morphology of Natural Rubber Latex Films. J. Rubb. Res., 13 (2), 125–138.Google Scholar
  10. 10.
    NURAYA, A. S., BAHARIN, A., AZURA, A. R., HAKIM, M. M. R., MAZLAN, I., ADNAN, M. AND NOORAZIAH, A. A. (2012) Reinforcement of Prevulcanised Natural Rubber Latex Films by Banana Stem Powder and Comparison with Silica and Calcium Carbonate. J. Rubb. Res., 15 (2), 124–140.Google Scholar
  11. 11.
    ARROYO, M., LOPEZ-MANCHADO, M. A. AND HERRERO, B. (2003) Organo-Montmorillonite As Substitute of Carbon Black in Natural Rubber Compounds. Polym., 44 (8), 2447–2453.CrossRefGoogle Scholar
  12. 12.
    MATHEW, S.H. E. R. A. AND VARGHESE, S. (2005) Natural Rubber Latex-Based Nanocomposites with Layered Silicates. J. Rubb. Res., 8(1), 1–15.Google Scholar
  13. 13.
    SARKAWI, S. S., KAEWSAKUL, W., SAHAKARO, K., DIERKES, W. K. AND NOORDERMEER, J. W. (2015) A Review on Reinforcement of Natural Rubber by Silica Fillers For Use in Low-Rolling Resistance Tires. J. Rubb. Res., 18 (4), 203–233.Google Scholar
  14. 14.
    ANGELLIER, H., MOLINA-BOISSEAU, S. AND DUFRESNE, A. (2005) Mechanical Properties of Waxy Maize Starch Nanocrystal Reinforced Natural Rubber. Macromol., 38 (22), 9161–9170.CrossRefGoogle Scholar
  15. 15.
    JIANG, H. X., NI, Q. Q. AND NATSUKI, T. (2011) Design and Evaluation of The Interface Between Carbon Nanotubes and Natural Rubber. Polym. Compos., 32 (2), 236–242.CrossRefGoogle Scholar
  16. 16.
    QURESHI, M. N. AND QAMMAR, H. (2010) Mill Processing and Properties of Rubber—Clay Nanocomposites. Mater. Sci. Eng.: C, 30 (4), 590–596.CrossRefGoogle Scholar
  17. 17.
    LORENZ, H., FRITZSCHE, J., DAS, A., STÖCKELHUBER, K. W., JURK, R., HEINRICH, G. AND KLÜPPEL, M. (2009) Advanced Elastomer Nano-Composites Based on CNT-Hybrid Filler Systems. Compos. Sci. Technol., 69(13), 2135–2143.CrossRefGoogle Scholar
  18. 18.
    KHANLARI, S. AND KOKABI, M. (2011) Thermal Stability, Aging Properties, and Flame Resistance of NR-Based Nanocomposite. J. Appl. Polym. Sci., 119(2), 855–862.CrossRefGoogle Scholar
  19. 19.
    VARGHESE, S. AND KARGER-KOCSIS, J. (2004) Melt-Compounded Natural Rubber Nanocomposites with Pristine and Organophilic Layered Silicates of Natural and Synthetic Origin. J. Appl. Polym. Sci., 91(2), 813–819.CrossRefGoogle Scholar
  20. 20.
    PEIGNEY, A., COQUAY, P., FLAHAUT, E., VANDENBERGHE, R. E., DE GRAVE, E. AND LAURENT, C. (2001) A Study of The Formation of Single and Double-Walled Carbon Nanotubes by A CVD Method. J. Phys. Chem. B, 105(40), 9699–9710.CrossRefGoogle Scholar
  21. 21.
    AJAYAN, P. M. (1999) Nanotubes From Carbon. Chem. Rev., 99 (7), 1787–1800.CrossRefGoogle Scholar
  22. 22.
    YU, M. F., LOURIE, O., DYER, M. J., MOLONI, K., KELLY, T. F. AND RUOFF, R. S. (2000). Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Sci., 287(5453), 637–640.CrossRefGoogle Scholar
  23. 23.
    SAITO, R., DRESSELHAUS, G. AND DRESSELHAUS, M. S. (1998) Physical Properties of Carbon Nanotubes. London: World Scientifc.CrossRefGoogle Scholar
  24. 24.
    GAO, G., CAGIN, T. AND GODDARD III, W. A. (1998) Energetics, Structure, Mechanical and Vibrational Properties of Single-Walled Carbon Nanotubes. Nanotechnol., 9(3), 184.CrossRefGoogle Scholar
  25. 25.
    DRESSELHAUS, M. S., DRESSELHAUS, G. AND EKLUND, P. C. (1996) Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications. USA: Academic PressGoogle Scholar
  26. 26.
    COLEMAN, J. N., KHAN, U., BLAU, W. J. AND GUN’KO, Y. K. (2006) Small But Strong: A Review of The Mechanical Properties of Carbon Nanotube—Polymer Composites. Carbon, 44 (9), 1624–1652.CrossRefGoogle Scholar
  27. 27.
    BHATTACHARYYA, S., SINTUREL, C., BAHLOUL, O., SABOUNGI, M. L., THOMAS, S. AND SALVETAT, J. P. (2008) Improving Reinforcement of Natural Rubber by Networking of Activated Carbon Nanotubes. Carbon, 46 (7), 1037–1045.CrossRefGoogle Scholar
  28. 28.
    PENG, Z., FENG, C., LUO, Y., LI, Y. AND KONG, L. X. (2010) Self-Assembled Natural Rubber/Multi-Walled Carbon Nanotube Composites Using Latex Compounding Techniques. Carbon, 48(15), 4497–4503.CrossRefGoogle Scholar
  29. 29.
    PENG, Z., FENG, C., LUO, Y, LI, Y., YI, Z. AND KONG, L. X. (2012) Natural Rubber/Multiwalled Carbon Nanotube Composites Developed With A Combined Self-Assembly and Latex Compounding Technique. J. Appl. Polym. Sci., 125(5), 3920–3928.CrossRefGoogle Scholar
  30. 30.
    JIANG, M. J., DANG, Z. M. AND XU, H. P. (2007) Giant Dielectric Constant and Resistance-Pressure Sensitivity in Carbon Nanotubes/Rubber Nanocomposites With Low Percolation Threshold. Appl. Phys. Lett., 90 (4), 042914.Google Scholar
  31. 31.
    THOMAS, P. S., ABDULLATEEF, A. A., AL-HARTHI, M. A., BASFAR, A. A., BANDYOPADHYAY, S., ATIEH, M. A. AND DE, S. K. (2012) Effect of Phenol Functionalization of Carbon Nanotubes on Properties of Natural Rubber Nanocomposites. J. Appl. Polym. Sci., 124 (3), 2370–2376.CrossRefGoogle Scholar
  32. 32.
    XIE, X. L., MAI, Y. W. AND ZHOU, X. P. (2005) Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review. Mater. Sci. Eng.: R: Reports, 49 (4), 89–112.CrossRefGoogle Scholar
  33. 33.
    CHATTERJEE, T. AND KRISHNAMOORTI, R. (2008) Steady Shear Response of Carbon Nanotube Networks Dispersed in Poly (Ethylene Oxide). Macromol., 41(14), 5333–5338.CrossRefGoogle Scholar
  34. 34.
    TASIS, D., TAGMATARCHIS, N., BIANCO, A. AND PRATO, M. (2006) Chemistry of Carbon Nanotubes. Chem. Rev., 106 (3), 1105–1136.CrossRefGoogle Scholar
  35. 35.
    ZHAN, Y. H., LIU, G. Q., XIA, H. S. AND YAN, N. (2011) Natural Rubber/Carbon Black/Carbon Nanotubes Composites Prepared Through Ultrasonic Assisted Latex Mixing Process. Plas. Rubb. Compos, 40 (1), 32–39.CrossRefGoogle Scholar
  36. 36.
    SUI, G., ZHONG, W., YANG, X. AND ZHAO, S. (2007) Processing and Material Characteristics of a Carbon Nanotube Reinforced Natural Rubber. Macromol. Mater. Eng., 292 (9), 1020–1026.CrossRefGoogle Scholar
  37. 37.
    FAKHRU’L-RAZI, A., ATIEH, M. A., GIRUN, N., CHUAH, T. G., EL-SADIG, M. AND BIAK, D. R. A. (2006). Effect of Multi-Wall Carbon Nanotubes on The Mechanical Properties of Natural Rubber. Compos. Structures, 75 (1), 496–500.CrossRefGoogle Scholar
  38. 38.
    ATIEH, M. A., GIRUN, N., MAHDI, E. S., TAHIR, H., GUAN, C. T., ALKHATIB, M. F. AND BAIK, D. R. (2006) Effect of Multi-Wall Carbon Nanotubes on The Mechanical Properties of Natural Rubber. Fullerenes, Nanotubes and Carbon Nonstructures, 14 (4), 641–649.CrossRefGoogle Scholar
  39. 39.
    DAS, A., STÖCKELHUBER, K. W., JURK, R., FRITZSCHE, J., KLÜPPEL, M. AND HEINRICH, G. (2009) Coupling Activity of Ionic Liquids Between Diene Elastomers and Multi-Walled Carbon Nanotubes. Carbon, 47(14), 3313–3321.CrossRefGoogle Scholar
  40. 40.
    BOKOBZA, L. (2007) Multiwall Carbon Nanotube Elastomeric Composites: A Review. Polym., 48(17), 4907–4920.CrossRefGoogle Scholar
  41. 41.
    TARAWNEH, M. A. A., AHMAD, S. H., NOUM, S. Y. E., & AHMAD, K. Z. K. (2011) Thermoplastic Natural Rubber Composites Reinforced with OMMT, Mwnts, and Hybrid OMMT—Mwnts. J. Reinforced Plast. Compos., 30(20), 1745–1752.CrossRefGoogle Scholar
  42. 42.
    ENDO, M., NOGUCHI, T., ITO, M., TAKEUCHI, K., HAYASHI, T., KIM, Y. A. AND DRESSELHAUS, M. S. (2008) Extreme-Performance Rubber Nanocomposites for Probing and Excavating Deep Oil Resources Using Multi-Walled Carbon Nanotubes. Adv. Funct. Mater., 18(21), 3403–3409.CrossRefGoogle Scholar
  43. 43.
    KUESENG, K. AND JACOB, K. I. (2006) Natural Rubber Nanocomposites with Sic Nanoparticles and Carbon Nanotubes. Eur. Polym. J., 42 (1), 220–227.CrossRefGoogle Scholar
  44. 44.
    ABDULLATEEF, A. A., THOMAS, S. P., AL-HARTHI, M. A., DE, S. K., BANDYOPADHYAY, S., BASFAR, A. A. AND ATIEH, M. A. (2012) Natural Rubber Nanocomposites with Functionalized Carbon Nanotubes: Mechanical, Dynamic Mechanical, and Morphology Studies. J. Appl. Polym. Sci., 125(S1).Google Scholar
  45. 45.
    CATALDO, F., URSINI, O. AND ANGELINI, G (2009) MWCNTs Elastomer Nanocomposite, Part 1: The Addition of MWCNTs to a Natural Rubber-based Carbon Black-filled Rubber Compound. Fullerenes, Nanotubes and Carbon Nanostructures, 17 (1), 38–54.CrossRefGoogle Scholar
  46. 46.
    ISMAIL, H., RAMLY, A. F. AND OTHMAN, N. (2011) The Effect of Carbon Black/Multiwall Carbon Nanotube Hybrid Fillers on the Properties of Natural Rubber Nanocomposites. Polym. Plast. Technol. Eng., 50 (7), 660–666.CrossRefGoogle Scholar
  47. 47.
    IVANOSKA-DACIKJ, A., BOGOEVA-GACEVA, G., ROOJ, S., WIENER, S. AND HEINRICH, G. (2015) Fine Tuning of the Dynamic Mechanical Properties of Natural Rubber/Carbon Nanotube Nanocomposites by Organically Modifed Montmorillonite: A First Step in Obtaining High-Performance Damping Material Suitable for Seismic Application. Appl. Clay Sci., 118, 99–106.CrossRefGoogle Scholar
  48. 48.
    NAKARAMONTRI, Y., NAKASON, C., KUMMERLÖWE, C. AND VENNEMANN, N. (2015) Effects of in-Situ Functionalization of Carbon Nanotubes with Bis (Triethoxysilylpropyl) Tetrasulfde (TESPT) and 3-Aminopropyltriethoxysilane (APTES) on Properties of Epoxidized Natural Rubber—Carbon Nanotube Composites. Polym. Eng. Sci., 55(11), 2500–2510.CrossRefGoogle Scholar
  49. 49.
    WANG, D., FUJINAMI, S., NAKAJIMA, K., NIIHARA, K. I., INUKAI, S., UEKI, H. AND NISHI, T. (2010) Production of a Cellular Structure in Carbon Nanotube/Natural Rubber Composites Revealed by Nanomechanical Mapping. Carbon, 48(13), 3708–3714.CrossRefGoogle Scholar
  50. 50.
    SUI, G., ZHONG, W. H., YANG, X. P. AND YU, Y. H. (2008) Curing Kinetics and Mechanical Behavior of Natural Rubber Reinforced with Pretreated Carbon Nanotubes. Mater. Sci. Eng.: A, 485 (1), 524–531.CrossRefGoogle Scholar
  51. 51.
    SHANMUGHARAJ, A. M., BAE, J. H., LEE, K. Y., NOH, W. H., LEE, S. H. AND RYU, S. H. (2007) Physical and Chemical Characteristics of Multiwalled Carbon Nanotubes Functionalized with Aminosilane and its Infuence on the Properties of Natural Rubber Composites. Compos. Sci. Technol., 67 (9), 1813–1822.CrossRefGoogle Scholar
  52. 52.
    GEORGE, N., CHANDRA, J., MATHIAZHAGAN, A. AND JOSEPH, R. (2015) High Performance Natural Rubber Composites with Conductive Segregated Network of Multiwalled Carbon Nanotubes. Compos. Sci. Technol., 116, 33–40.CrossRefGoogle Scholar
  53. 53.
    ANAND K. A., JOSE T. S., ALEX, R. AND JOSEPH, R. (2009) Natural Rubber-Carbon Nanotube Composites through Latex Compounding. Int. J. Polymeric Mater., 59 (1), 33–44.CrossRefGoogle Scholar
  54. 54.
    JUNKONG, P., KUESENG, P., WIRASATE, S., HUYNH, C. AND RATTANASOM, N. (2015) Cut Growth and Abrasion Behaviour, and Morphology of Natural Rubber Filled with MWCNT and MWCNT/Carbon Black. Polym. Testing, 41, 172–183.CrossRefGoogle Scholar
  55. 55.
    NAKARAMONTRI, Y., NAKASON, C., KUMMERLÖE, C. AND VENNEMANN, N. (2016) Enhancement of Electrical Conductivity and Filler Dispersion of Carbon Nanotube Filled Natural Rubber Composites by Latex Mixing and in situ Silanization. Rubb. Chem. Technol., 89 (2), 272–291.CrossRefGoogle Scholar
  56. 56.
    BOKOBZA, L. (2012) Enhanced Electrical and Mechanical Properties of Multiwall Carbon Nanotube Rubber Composites. Polym. Adv. Technol., 23(12), 1543–1549.Google Scholar
  57. 57.
    SAGAR, S., IQBAL, N., MAQSOOD, A. AND BASSYOUNI, M. (2014) MWCNTS Incorporated Natural Rubber Composites: Thermal Insulation, Phase Transition and Mechanical Properties. Int. J. Eng. Technol., 6(3), 168.CrossRefGoogle Scholar
  58. 58.
    LIANG, F. ET AL. (2004) A Convenient Route to Functionalized Carbon Nanotubes, Nano Lett., 4, 1257.CrossRefGoogle Scholar
  59. 59.
    GEORGAKILAS V., KORDATOS K., PRATO M., D. M. GULDI, HOLZINGER M. AND HIRSCH A. (2002) Organic Functionalization of Carbon Nanotubes, J. Am. Chem. Soc., 124, 760.CrossRefGoogle Scholar
  60. 60.
    HOLZINGER, M., ABRAHAM, J., WHELAN, P., GRAUPNER, R., LEY, L., HENNRICH, F., KAPPES, M. AND HIRSCH, A. (2003) Functionalization of Single-walled Carbon Nanotubes with (R-) Oxycarbonyl Nitrenes, J. Am. Chem. Soc., 125, 8566.CrossRefGoogle Scholar
  61. 61.
    COLEMAN, K. S., BAILEY, S. R., FOGDEN, S. AND GREEN, M. L. H. (2003) Functionalization of Single-walled Carbon Nanotubes via the Bingel Reaction, J. Am. Chem. Soc., 125, 8722.CrossRefGoogle Scholar
  62. 62.
    PONNAMMA, D., SADASIVUNI, K. K., GROHENS, Y., GUO, Q. AND THOMAS, S. (2014) Carbon Nanotube Based Elastomer Composites—An Approach Towards Multifunctional Materials. J. Mater. Chem. C, 2(40), 8446–8485.CrossRefGoogle Scholar
  63. 63.
    KARIMI, M., SOLATI, N., AMIRI, M., MIRSHEKARI, H., MOHAMED, E., TAHERI, M. AND GHASEMI, A. (2015) Carbon Nanotubes Part I: Preparation of A Novel and Versatile Drug-delivery Vehicle. Expert Opinion on Drug Delivery, 12 (7), 1071–1087.CrossRefGoogle Scholar
  64. 64.
    BOONSTRA, B.B. (1987) Reinforcing Fillers. Chapter 7. In Rubber Technology and Manufacture. BLOW, C.M. AND HEPBURN, C. (eds.), London: Butterworths.Google Scholar
  65. 65.
    AZIZ, S. A. A., MAZLAN, S. A., ISMAIL, N. N., KHAIRI, M. H. A. AND YUNUS, N. A. (2017, January) Rheological Properties of Carbon Nanotubes-Reinforced Magnetorheological Elastomer. J. Phys.: Conference Series (Vol. 795, No.1, p. 012074). IOP Publishing.Google Scholar
  66. 66.
    AZIZ, S. A. A., MAZLAN, S. A., ISMAIL, N. I. N. AND CHOI, S. B. (2018) Implementation of Functionalized Multiwall Carbon Nanotubes on Magnetorheological Elastomer. J. Mater. Sci., 53(14), 10122–10134.CrossRefGoogle Scholar

Copyright information

© The Malaysian Rubber Board 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringShahid Bahonar University of KermanKermanIran

Personalised recommendations