Journal of Rubber Research

, Volume 21, Issue 2, pp 135–152 | Cite as

Electrostrictive Properties of Poly(butadiene-co-acrylonitrile)-Polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] Blends: Effects of Conductive Filler Loading

  • K. C. YongEmail author


Peroxide-vulcanised NBR-PAni. DBSA blends with useful electrical conductivities (up to 10−1 S. cm−1) were prepared and their electrostrictive behaviours under certain levels of applied electric field were also successfully assessed. A reasonable high level of compatibility between NBR and PAni. DBSA was observed from both FT-IR spectroscopy and TEM microscopy studies. As found from both electrostrictive strain (Sz) tests, NBR-PAni. DBSA blends with 10.0–30.0 wt% of PAni.DBSA content possessed the best electrostrictive response (Sz up to 11.8%) with applied electrical field strengths up to 50 V/μm. Besides this, blends consisting of very low and very high PAni.DBSA contents (i.e. ≤ 5. 0 wt % and ≥ 40. 0 wt %) possessed poorer electrostrictive responses under the same level of applied electrical field due to their lower dielectrical properties and higher phase separation problem between the two major constituent polymers.


conductive rubber nitrile rubber polyaniline electrostrictive behaviour electrical actuator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    KUHN, W., HARGITAY, B., KATCHALSKY, A. AND EISENBERG, H. (1950) Reversible Dilation and Contraction by changing the State of Ionization. Nature, 165, 514–516.CrossRefGoogle Scholar
  2. 2.
    BAR — COHEN, Y. (2010) 8- Electroactive Polymers as Actuators. In: Uchino, K. editor. Advanced Piezoelectric Materials, Amsterdam: Woodhead Publishing, 287–317.CrossRefGoogle Scholar
  3. 3.
    GUYOMAR, D., COTTINET, P. J., LEBRUN, L., PUTSON, C., YUSE, K., KANDA, M. AND NISHI, Y. (2012) The Compressive Electrical Field Electrostrictive Coefficient M33 of Electroactive Polymer Composites and Its Saturation versus Electrical Field, Polymer Thickness, Frequency and Fillers. Polym. Adv. Technol. 23(6), 946–950.CrossRefGoogle Scholar
  4. 4.
    WONGTIMNOI, K., GUIFFARD, B., BOGNER - VAN DE MOORTELE, A., SEVEYRAT, L., GAUTHIER, C. AND CAVAILL, J. Y. (2011) Improvement of Electrostrictive Properties of a Polyether — based Polyurethane Elastomer filled with Conductrive Carbon Black. Compos. Sci. Technol., 71(6), 885–892.CrossRefGoogle Scholar
  5. 5.
    GUIFFARD, B., SEVEYRAT, L., SEBALD, G. AND GUYOMAR, D. (2006) Enhanced Electric Field — induced Strain in Non — percolative Carbon Nanopowder/Polyurethane Composites. J. Phys. D Appl. Phys., 39, 3053–3057.CrossRefGoogle Scholar
  6. 6.
    PUTSON, C., JAAOH, D., MEAUMA, N. AND MUENSIT, N. (2012) Effect of Micro — and Nano — Particle Fillers at Low Percolation Threshold on the Dielectric and Mechanical Properties of Polyurethane/ Copper Composites. J. Inorg. Organomet. Polym., 22(6), 1300–1307.CrossRefGoogle Scholar
  7. 7.
    GUIFFARD, B., GUYOMAR, D., SEVEYRAT, L., CHOWANEK, Y., BECHELANY, M. AND CORNU, D. (2009) Enhanced Electroactive Properties of Polyurethane Films loaded with Carbon coated SiC Nanowires. J. Phys. D Appl. Phys., 42(5), 055503.CrossRefGoogle Scholar
  8. 8.
    BHARTI, V., CHENG, Z. Y., GROSS, S., XU, T. B. AND ZHANG, Q. M. (1999) High Electrostrictive Strain under High Mechanical Stress in Electron Irradiated Poly(vinylidene fluoride — trifluorethylene) Copolymer. Appl. Phys. Lett., 75, 2653.CrossRefGoogle Scholar
  9. 9.
    GUILLOT, F. M. AND BALIZER, E. (2003) Electrostrictive Effect in Polyurethane. J. Appl. Polym. Sci., 89(2), 399–404.CrossRefGoogle Scholar
  10. 10.
    AN, N., LIU, H., DING, Y., ZHANG, M. AND TANG, Y. (2011) Preparation and Electroactive Properties of a PVDF/nano — TiO2 Composite Film. Appl. Surf. Sci., 257, 3831–3835.CrossRefGoogle Scholar
  11. 11.
    PALAKODETI, R. AND KESSLER, M. R. (2006) Influence of Frequency and Prestrain on the Mechanical Efficiency of Dielectric Electroactive Polymer Actuators. Mater. Lett., 60, 3437–3440.CrossRefGoogle Scholar
  12. 12.
    LACOUR, S. P., WAGNER, S., PRAHLAD, H. AND PELRINE, R. (2004) High Voltage Photoconductive Switches of Amorphous Silicon for Electroactive Polymer Actuators. J. Non — Cryst. Solids, 338, 736–739.CrossRefGoogle Scholar
  13. 13.
    JUNG, Y. C., YOO, H. J., KIM, Y. A., CHO, J. W. AND ENDO, M. (2010) Electroactive Shape Memory Performance of Polyurethane Composite having Homogeneously Dispersed and Covalently Crosslinked Carbon Nanotubes. Carbon, 48, 1598–1603.CrossRefGoogle Scholar
  14. 14.
    PELRINE, R., KORNBLUH, R. AND JOSEPH, J. (1998) Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation. Sensors Actuat. A Phys., 64, 77–85.CrossRefGoogle Scholar
  15. 15.
    PELRINE, R., KORNBLUH, R., PEI, Q. AND JOSEPH, J. (2000) High — Speed Electrically Actuated Elastomers with Strain greater than 100%. Science, 287, 836–839.CrossRefGoogle Scholar
  16. 16.
    PELRINE, R., KORNBLUH, R., JOSEPH, J., HEYDT, R., PEI, Q. AND CHIBA, S. (2000) High — Field Deformation of Elastomeric Dielectrics for Actuators. Mater. Sci. Eng. C, 11, 89–100.CrossRefGoogle Scholar
  17. 17.
    GUIFFARD, B., SEVEYRAT, L., SEBALD, G. AND GUYOMAR, D. (2006) Enhanced Electric Field — Induced Strain in Non — Percolative Carbon Nanopowder/ Polyurethane Composites. J. Phys. D Appl. Phys., 39, 3053–3057.CrossRefGoogle Scholar
  18. 18.
    ZHANG, S., ZHANG, N., HUANG, C., REN, K. AND ZHANG, Q. (2005) Microstructure and Electromechanical Properties of Carbon Nanotube/Poly(vinylidene fluoridetrifluoroethylene — chlorofluoroethylene) Composites. Adv. Mat., 17, 1897–1901.CrossRefGoogle Scholar
  19. 19.
    HUANG, C. AND ZHANG, Q. (2005) Fully Functionalized High — Dielectric Constant Nanophase Polymers with High Electromechanical Response. Adv. Mat., 17, 1153–1158.CrossRefGoogle Scholar
  20. 20.
    HUANG, C. AND ZHANG, Q. (2004) Enhanced Dielectric and Electromechanical Responses in High Dielectric Constant All — Polymer Percolative Composites. Adv. Funct. Mater., 14, 501–506.CrossRefGoogle Scholar
  21. 21.
    YONG, K. C. (2012) Electrically Conductive Poly(butadiene - co — acrylonitrile) — Polyaniline Dodecylbenzenesulfonate NBR — PAni.DBSA] Blends with Hydroquinone as Compatibiliser. J. Rubb. Res., 15(3), 153–166.Google Scholar
  22. 22.
    YONG, K. C. AND MT. SAAD, C. S. (2009) Novel Peroxide — Vulcanized NBR — PAni.DBSA] Blends, Part 1: Preparation & Characterization. J. Appl. Polym. Sci., 112, 3199–3208.CrossRefGoogle Scholar
  23. 23.
    YONG, K. C. (2012) Novel Peroxide — Vulcanized NBR — PAni.DBSA] Blends, Part 2: Effects of Conductive Filler Particles Alignment. J. Appl. Polym. Sci., 124(1), 729–739.CrossRefGoogle Scholar
  24. 24.
    YONG, K. C., FOOT, P. J. S., MORGAN, H., COOK, S. AND TINKER, A. J. (2006) ConductivePoly(butadiene-co-acrylonitrile) Polyaniline Dodecylbenzenesulfonate [NBR — PAni.DBSA] Blends prepared in Solution. Eur. Polym. J., 42, 1716–1727.CrossRefGoogle Scholar
  25. 25.
    YONG, K. C. AND MT SAAD, CHE SU. (2010) High Temperature — Mechanical Mixing to prepare Electrically Conductive Sulfur — Vulcanised Poly(butadiene co — acrylonitrile) — Polyaniline Dodecylbenzenesulfonate Blends. J. Rubb. Res., 13(1), 1–17.Google Scholar
  26. 26.
    YONG, K. C. (2013) NBR — PAni.DBSA Blends: Effect of Electron Beam Irradiation. Rubb. Chem. Technol., 86(1), 68–85.CrossRefGoogle Scholar
  27. 27.
    YONG, K. C. (2014) Poly(butadiene co — acrylonitrile) — Polyaniline Dodecylbenzenesulfonate [NBR — PAni.DBSA] Blends for Corrosion Inhibition of Carbon Steel. J. Rubb. Res., 17(4), 205–218.Google Scholar
  28. 28.
    YONG, K. C. (2016) Effect of Incorporating Ti02 on the Corrosion Inhibition Behaviour of Poly(butadiene — co — acrylonitrile) — Polyaniline Dodecylbenzenesulfonate [NBR — PAni.DBSA] Blends. J. Rubb. Res., 19(3), 190–201.Google Scholar
  29. 29.
    BRITISH STANDARDS INSTITUTION (2005) BS ISO 37. Rubber, Vulcanised or Thermoplastic — Determination of Tensile Stress — Strain Properties.Google Scholar
  30. 30.
    KIM, B., PARK, Y. D., KIM, J., HONG, S. M. AND KOO, C. M. (2010) Measuring True Electromechanical Strain of Electroactive Thermoplastic Elastomer Gels using Synchrotron SAXS. J. Polym. Sci. Pt. B Polym. Phys., 48, 2392–2398.CrossRefGoogle Scholar
  31. 31.
    GUILLOT, F. M., JARZYNSKI, J. AND E. BALIZER, E. (1998) Electromechanical Response of Polymer Films by Laser Doppler Vibrometry. J. Acoust. Soc. Am., 103, 1421–1427.CrossRefGoogle Scholar
  32. 32.
    PETCHAROEN, K. AND SIRIVAT, A. (2013) Electrostrictive Properties of Thermoplastic Polyurethane Elastomer: Effects of Urethane Type and Soft — Hard Segment Composition. CurrentAppl. Phys., 13, 1119–1127.Google Scholar
  33. 33.
    VALLIM, M. R., FELISBERTI, M. I. AND DE PAOLI, M. - A. (2000) Blends of Poly aniline with Nitrilic Rubber. J Appl. Polym. Sci., 75, 677–684.CrossRefGoogle Scholar
  34. 34.
    STAUFFER, D. (1985) Introduction to Percolation Theory, London: Taylor and Francis.CrossRefGoogle Scholar
  35. 35.
    KWAK, H. L., CHO, K., YU, S., BAEK, K. Y., LEE, J. C., HONG, S. M. AND KOO, C. M. (2012) Tunable Polymer Actuators via a Simple and Versatile Blending Approach. Sens. Actuators B Chem., 174, 547–554.CrossRefGoogle Scholar
  36. 36.
    BUTKEWITSCH, S AND SCHEINBEIM, J. (2006) Dielectric Properties of a Hydrated Sulfonated Poly(styrene — ethylene/butylene styrene) Triblock Copolymer. Appl. Surf. Sci, 252, 8277–8286.CrossRefGoogle Scholar

Copyright information

© The Malaysian Rubber Board 2018

Authors and Affiliations

  1. 1.Technology and Engineering Division, Rubber Research Institute of MalaysiaMalaysian Rubber BoardSelangorMalaysia

Personalised recommendations