Journal of Rubber Research

, Volume 21, Issue 1, pp 17–29 | Cite as

Contrastive Study on Properties of Acid and Microorganisms Coagulated Natural Rubber during Accelerated Storage

  • J. Chen
  • S. D. LiEmail author
  • L. F. Li
  • Z. F. Wang
  • L. Yang
  • J. P. Zhong


The properties of natural rubber latex coagulated by acid and microorganisms during accelerated storage were contrasted, respectively. The molecular weight, gel content, Mooney viscosity, Wallace initial plasticity and the plasticity retention index of natural rubber latex during the accelerated storage period were analysed. The results indicate that prolonged storage time leads to a gradual increase in the molecular weight, gel content, crosslink density and Wallace initial plasticity, whereas plasticity retention index reduces. Wallace initial plasticity exhibits significant correlation, while plasticity retention index indicates a negative correlation with both molecular weight and gel content, respectively. The molecular structure and properties of natural rubber latex coagulated by microorganisms are significantly different from those of natural rubber coagulated by acid. The molecular weight, gel content and Wallace initial plasticity of natural rubber latex coagulated by microorganisms are higher than those of natural rubber latex coagulated by acid, while plasticity retention index and protein content of natural rubber latex coagulated by microorganisms is lower than that of natural rubber latex coagulated by acid.


Natural rubber microorganisms coagulated acid coagulated properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    KOOKARINRAT, C. and PAOPRASERT, P. (2015) Versatile One-pot Synthesis of Grafted-Hydrogenated Natural Rubber. Iran. Polym. J., 24(2), 123–133.CrossRefGoogle Scholar
  2. 2.
    ANGELLIER, H., MOLINABOISSEAU, S., LEBRUN, L., A. and DUFRESNE, A. (2005) Processing and Structural Properties of Waxy Maize Starch Nanocrystals Reinforced Natural Rubber. Macromol, 38(9), 3783–3792.CrossRefGoogle Scholar
  3. 3.
    SATO, S., HONDA, Y., KUWAHARA, M., KISHIMOTO, H., YAGI, N. and MURAOKA, K. (2004) Microbial Scission of Sulfide Linkages in Vulcanised Natural Rubber by a White Rot Basidiomycete, Ceriporiopsis Subvermispora. Biomacromol., 5(2), 511–515.CrossRefGoogle Scholar
  4. 4.
    SANGUANSAP, K., SUTEEWONG, T., SAENDEE, P., BURANABUNYA, U., TANGBORIBOONRAT, P. and SANGUANSAP, K. (2005) Composite Natural Rubber Based Latex Particles: A Novel Approach. Polym., 46(4), 1373–1378.CrossRefGoogle Scholar
  5. 5.
    KAEWSAKUL, W, SAHAKARO, K., DIERKES, W K. and NOORDERMEER, J. W. M. (2012) Optimization of Mixing Conditions for Silica-Reinforced Natural Rubber Tire Tread Compounds. Rubb. Chem. Technol., 85(2), 277–294.CrossRefGoogle Scholar
  6. 6.
    PARRA, D. F., FREIRE, M. T. D. A. and MARCO A. D. P. (2000) Diffusion of Amine Stabilizers in Vulcanised Natural Rubber Compositions Used in Tires. J. Appl. Polym. Sci., 75(5), 670–676.CrossRefGoogle Scholar
  7. 7.
    DE, D., PANDA, P. K., ROY, M., BHUNIA, S. and JAMAN, A. I. (2013) Reinforcing Effect of Nanosilica on the Properties of Natural Rubber/Reclaimed Ground Rubber Tire Vulcanisates. Polym. Eng. Sci., 53(2), 227–237.CrossRefGoogle Scholar
  8. 8.
    SALOMEZ, M., SUBILEAU, M., INTAPUN, J., BONFILS, F., SAINTE-BEUVE, J. and VAYSSE, L. (2014) Micro-organisms in Latex and Natural Rubber Coagula of Hevea Brasiliensis, and Their Impact on Rubber Composition, Structure and Properties. J. Appl. Microbiol., 117(4), 921–929.CrossRefGoogle Scholar
  9. 9.
    NIMPAIBOON, A., SRIRING, M. and SAKDAPIPANICH, J.T. (2016) Molecular Structure and Storage Hardening of Natural Rubber: Insight into the Reactions Between Hydroxylamine and Phospholipids Linked to Natural Rubber Molecule. J. Appl. Polym. Sci., 133(31) 43753(1–9).CrossRefGoogle Scholar
  10. 10.
    MITRA, S., CHATTOPADHYAY, S., BHARADWAJ, Y. K., SABHARWAL, S., and BHOWMICK, A. K. (2008) Effect of Electron Beam-Cross-Linked Gels on the Rheological Properties of Raw Natural Rubber. Radiat. Phys. Chem., 77(77), 630–642.CrossRefGoogle Scholar
  11. 11.
    MAZNAH, K. S., BAHARIN, A., HANAFI, I., AZHAR, M. E. and HAKIM, M. H. M. R. (2008) Effect of Acid Treatment on Extractable Protein Content, Crosslink Density and Tensile Properties of Natural Rubber Latex Films. Polym. Test., 27(7), 823–826.CrossRefGoogle Scholar
  12. 12.
    BURFIELD, D. R. (1974) Epoxy Groups Responsible for Crosslinking in Natural Rubber. Nature, 249(5452), 29–30.CrossRefGoogle Scholar
  13. 13.
    BURFIELD, D. R., and GAN, S. N. (1975) Nonoxidative Crosslinking Reactions in Natural Rubber. i. Determination of Crosslinking Groups. J. Polym. Sci., Polym. Chem. Ed., 13(12), 2725–2734.CrossRefGoogle Scholar
  14. 14.
    BURFIELD, D. R. and GAN, S. N. (1977) Nonoxidative Crosslinking Reactions in Natural Rubber. ii. Radiotracer Study of the Reactions of Amino Acids in Rubber Latex. J. Polym. Sci., Polym. Chem. Ed., 15(11), 2721–2730.CrossRefGoogle Scholar
  15. 15.
    LI, S. D., YU, H. P., PENG, Z. and LI, P. S. (1998) Study on Variation of Structure and Properties of Natural Rubber during Accelerated Storage. J. Appl. Polym. Sci., 70(9), 1779–1783.CrossRefGoogle Scholar
  16. 16.
    LI, S. D., YU, H. P., PENG, Z., ZHU, C. S. and LI, P. S. (2000) Study on Thermal Degradation of Sol and Gel of Natural Rubber. J. Appl Polym. Sci., 75(11), 1339–1344.CrossRefGoogle Scholar
  17. 17.
    SEKHAR, B. C. (1958) Aeration of Natural Rubber Latex. 1. Effect of Polyamines on the Hardeness and Aging Characteristics of Aerated Latex Rubber. Rubb. Chem. Technol., 31(3), 425–430.CrossRefGoogle Scholar
  18. 18.
    SEKHAR, B. C. (1960) Degradation and Crosslinking of Polyisoprene in Hevea Brasiliensis Latex during Processing and Storage. J. Appl. Polym. Sci., 48(150), 133–137.CrossRefGoogle Scholar
  19. 19.
    SEKHAR, B. C. (1962) Inhibition of Hardening in Natural Rubber. Rubb. Chem. Technol., 35(4), 889–895.CrossRefGoogle Scholar
  20. 20.
    GREGG, E. C. and MACEY, J. H. (1973) The Relationship of Properties of Synthetic Poly (Isoprene) and Natural Rubber in the Factory. The Effect of Non-Rubber Constituents of Natural Rubber. Rubb. Chem. Technol., 46(1), 47–66.CrossRefGoogle Scholar
  21. 21.
    GREGORY, M. J. and TAN, A. S. (1975) Some Observations on Storage Hardening of Natural Rubber, In: Proc. Int. Rubb. Conf., Kuala Lumpur, 28.Google Scholar
  22. 22.
    SIN, S.W. (1969) Storage Hardening in Natural Rubber. Chemistry Division Report. Kuala Lumpur: Rubber Research Institute of Malaya. 76.Google Scholar
  23. 23.
    MARINHO, J.R.D. and TANAKA, Y. (1999) Structural Characterisation of Wild Rubber: Gel Content. J. Rubb. Res., 2(4), 231–238.Google Scholar
  24. 24.
    YUNYONGWATTANAKORN J, SAKDAPIPANICH, J. T. and KAWAHARA, S. (2007) Effect of Gel on Crystallization Behavior of Natural Rubber After Accelerated Storage Hardening Test. J. Appl. Polym. Sci., 106(1), 455–461.CrossRefGoogle Scholar
  25. 25.
    IRS. (2017) International Rubber Study Group Statistics: Latest World Rubber Industry Outlook. Available at: accessed on 22/12/17.Google Scholar

Copyright information

© The Malaysian Rubber Board 2018

Authors and Affiliations

  • J. Chen
    • 1
  • S. D. Li
    • 2
    Email author
  • L. F. Li
    • 1
  • Z. F. Wang
    • 3
  • L. Yang
    • 2
  • J. P. Zhong
    • 2
  1. 1.Chemistry and Chemical Engineering School, Development Center for New Materials Engineering and Technology in Universities of GuangdongLingnan Normal UniversityZhanjiangPR China
  2. 2.College of ScienceGuangdong Ocean UniversityZhanjiangP. R. China
  3. 3.College of Materials and Chemical EngineeringHainan UniversityHaikouP. R. China

Personalised recommendations