Skip to main content
Log in

Origin of Secondary Somatic Embryos and Genetic Stability of the Regenerated Plants in Hevea brasiliensis

  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Micropropagation by secondary embryogenesis had been established in Hevea brasiliensis. However, origin and development of secondary embryos and genetic stability of the regenerated plants remained unclear. Visual and cytological observations found secondary embryos mainly arose from epidermal cells of cotyledons and might originate from single cells. The number of pro-embryos (45.00) peaked after 20 days of cultivation for cell differentiation. At the maturation STAGE, the sum of immature embryos including globular, heart-Like, and torpedo-liked secondary embryos (22.50) was approximately equal to the number of cotyledonary embryos (21.75), which was much lower than that of pro-embryos (45.00), indicating a great number of pro-embryos were not able to convert into cotyledonary embryos under the current culture conditions. Evaluation of the genetic stability through chromosome number counting and EST-SSRs fingerprint, showed the chromosome number of the regenerated plants was similar to the mother tree (2n=36), the variation rates of EST-SSRs loci and the regenerated plants initially increased and then decreased with multiplication cycles, and the variation rate of EST-SSRs loci was considered low (<2.61%), indicating the genome remained stable during multiplications. These results could further improve secondary embryogenesis system and inquire into its potential applications in H. brasiliensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. WANG, Z., XENG, Z., CHEN, G, WU, H., LI, Q., FAN, G. AND LU, W. (1980) Induction of Rubber Plantlets from Anther of Hevea brasiliensis Muell-Arg In Vitro. Chinese J. Trop. Crops, 1, 25–26. (in Chinese, with summary in English).

    Google Scholar 

  2. CARRON M.P. AND ENJALRIC, F. (1982) Studies on Vegetative Micropropagation of Hevea brasiliensis by Somatic Embryogenesis and In Vitro Microcutting. In: A. Fujiwara (ed.), Plant Tissue Culture. Tokyo: Maruzen, 751–752.

    Google Scholar 

  3. LIU, S.Q., YUAN, X.H., HUANG, X. AND XU, L.Y. (1985) Comparative Studies on Yield and Properties of Juvenile Type and its Mature Type Clones. Trop. Crop Res., 3, 1–5. (in Chinese, with summary in English).

    Google Scholar 

  4. CHEN, X.T., WANG, Z.Y, WU, H.D., XIE, Y.P. AND ZHENG, R.W. (1998) In Vitro Mcropropagation of Juvenile Self-Root Clones of Hevea brasiliensis. Acta Agronom Sin, 24(2), 225–230. (in Chinese, with summary in English).

    Google Scholar 

  5. CHEN, X.T., WANG, Z.Y, WU, H.D. AND ZHANG, X.J. (2002) A New Planting Material of Hevea brasiliensis — Self-Rooting Juvenile-Type Clone. Chinese J. Trop. Crops, 23(1), 19–23 (in Chinese, with summary in English).

    CAS  Google Scholar 

  6. YUAN, X.H., YANG, S.Q., XU, L.Y, WU, J.L. AND HAO, B.Z. (1998) Charactenstics Related to Higher Rubber Yield of Hevea brasiliensis Juvenile-Type Clone Gll. J. Rubb. Res., 1(2), 1–2.

    Google Scholar 

  7. LARDET, L., LECONTE, A., BOKO, C., DEA, B.G, KELI, J. AND CARRON, M.P. (2001) Field Growth and Rubber Yield of Hevea brasiliensis (Muell.-Arg.) from Budded Versus In Vitro Micropropagated Plants from Clone IRCA 18. In: First International Symposium on Acclimatization and Establishment of Mcropropagated Plants. Sam-Halkidiki, 283–293.

    Google Scholar 

  8. CARRON, M.P., GRANET, F. AND KELI, J. (2007) Budding from Rejuvenated Clones”: A Good Compromise between Micropropagation and Conventional Budding. In: International Rubber Conference, Siem Reap, Cambodia, 367–373.

    Google Scholar 

  9. ETIENNE, H., LARTAUD, M., Michaux-FERRIERE, N., CARRON, M.P., BERTHOULY, M. AND TEISSON, C. (1997) Improvement of Somatic Embryogenesis in Hevea brasiliensis (Mull. Arg) Using the Temporary Immersion Technique. In Vitro Cell Dev. Biol-Plant, 33(2), 81–87.

    Article  Google Scholar 

  10. ASOKAN, M.P., KUMARI JAYASREE, P., THOMAS, V., SUSHAMA KUMARI, S., KALA, R.G., JAYASREE, R., SETHURAJ, M.R. AND THULASEEDHARAN, A. (2002) Influence of 2, 4-D and Sucrose on Repetitive Embryogenesis in Rubber (Hevea brasiliensis Muell. Arg. cv GT1). J. Tree Sci., 21(1–2), 18–26.

    Google Scholar 

  11. KALA, R.G., KURUVILA, L. AND JAYASREE KUMARI, P. (2008) Secondary Embryogenesis and Plant Regeneration from Leaf Derived Somatic Embryo of Hevea brasiliensis. J. Plantation Crops, 36(3), 218–222.

    Google Scholar 

  12. HUA, Y.W., HUANG, T.D. AND HUANG, H.S. (2010) Micropropagation of Self-Rooting Juvenile Clones by Secondary Somatic Embryogenesis in Hevea brasiliensis. Plant Breed., 129(2), 202–207.

    Article  CAS  Google Scholar 

  13. BLANC, G., BAPTISTE, C., OLIVER, G., MARTIN, F. AND MONTORO, P. (2006) Efficient Agrobacterium tumefaciens-Mediated Transformation of Embryogenie Calli and Regeneration of Hevea brasiliensis Mull Arg. Plants. Plant Cell Rep., 24(12), 724–733.

    Article  CAS  Google Scholar 

  14. RAEMAKERS, C.J.J.M., JACOBSEN, E. AND VISSER, R.G.F. (1995) Secondary Somatic Embryogenesis and Applications in Plant Breeding. Euphytica, 81(1), 93–107.

    Article  Google Scholar 

  15. HAISEL, D., HOFMAN, P., VAGNER, M., LIPAVSKA, H., TICHA, I, SCHÄFER, C. AND CAPKOVA, V. (2001) Ex Vitro Phenotype Stability is Affected By In Vitro Cultivation. Biol. Plantarum, 44(3), 321–324.

    Article  CAS  Google Scholar 

  16. LANDEY, R.B., CENCI, A., GEORGET, F., BERTRAND, B., CAMAYO, G., DECHAMP, E., HERRERA, J.C., SANTONI, S., LASHERMES, P., SIMPSON, J. AND ETIENNE, H. (2013) High Genetic and Epigenetic Stability in Coffea Arabica Plants Derived from Embryogenic Suspensions and Secondary Embryogenesis as Revealed by Aflp, MSAP and the Phenotypic Variation Rate. PLOSONE, 8(2).

    Google Scholar 

  17. LARKIN, P.J. AND SCOWCROFT, W.R. (1981) Somaclonal Variation: A New Source of Variability from Cell Cultures for Plant Improvement. Theor. Appl. Genet, 60(2), 60–4.

    Google Scholar 

  18. KARP, A., JONES, M.G.K., FOULGER D., FISH, N AND BRICHT, S.W.J. (1989) Variability in Potato Tissue Culture. Am. Potato J., 66(10), 669–684.

    Article  Google Scholar 

  19. ORTON, T.J. (1980) Chromosomal Variability in Tissue Cultures and Regenerated Plants of Hordeum. Theor. Appl. Genet, 56(3), 101–112.

    Article  CAS  Google Scholar 

  20. MIYAO, A., NAKAGOME, M., OHNUMA, T., YAMAGATA, H., KANAMORI, H., KATAYOSE, Y, TAKAHASHI, A., MATSUMOTO, T. AND HIROCHIKA, H. (2012) Molecular Spectrum of Somaclonal Variation in Regenerated Rice Revealed By Whole-Genome Sequencing. Plant Cell Physio., 53(1), 256–264.

    Article  CAS  Google Scholar 

  21. RODRIGUEZ LOPEZ, C.M., WETTEN, A.C. AND WILKINSON, M.J. (2010) Progressive Erosion of Genetic and Epigenetic Variation in Callus-Derived Cocoa (Theobroma cacao) Plants. New Phytol, 186(4), 856–868.

    Article  CAS  Google Scholar 

  22. MIGUEL, C. AND MARUM, L. (2011) An Epigenetic View of Plant Cells Cultured In Vitro: Somaclonal Variation and Beyond. J. Exp. Bot, 62(11), 3713–3725.

    Article  CAS  Google Scholar 

  23. MCKENZIE, N., WEN, L.Y AND DALE, J. (2002) Tissue-Culture Enhanced Transposition of the Maize Transposable Element Dissociation in Brassica oleracea var. ‘Italica’. Theor. Appl. Genet., 105(1), 23–33.

    Article  CAS  Google Scholar 

  24. CARRON, M.P, LARDET, L., LECONTE, A, DEA, B.G, KELI, J., GRANET, F., JULIEN, J., TEERAWATANASUK, K. AND MONTORO, P. (2009) Field Trials Network Emphasizes the Improvement of Growth and Yield Through Mcropropagation in Rubber Tree (Hevea brasiliensis, Muell.-Arg.) In: 111 International Symposium on Acclimatization and Establishment of Mcropropagated Plants 8/12, 2007 September 12. Acta. Hort, 812, 485–492.

    Article  Google Scholar 

  25. JOHANSEN, D.A. (1940) Plant Mcrotech-nique. London: Mc Graw Hill Book Co.

    Google Scholar 

  26. BASSAM, B., CAETANO-ANOLLES, G AND GRESSHOFF, P.M. (1991) Fast and Sensitive Silver Staining of DNA in Polyacrylamide Gels. Analyt Biochem., 196(1), 80–83.

    Article  CAS  Google Scholar 

  27. UZELAC, B., NINKOVIC, S., SMTGOCKI, A. AND BUDIMIR, S. (2007) Origm and Development of Secondary Somatic Embryos in Transformed Embryogenie Cultures of Medicago Sativa. Biol. Plantarum, 51(1), 1–6.

    Article  Google Scholar 

  28. PAVLOVIC, S., VRNTERHALTER B., ZDRAVKOVIC-KORAC, S., VINTERHALTER D., ZDRAVKOVIC, I, CVIKIC, D. AND MITIC, N. (2013) Recurrent Somatic Embryogenesis and Plant Regeneration from Immature Zygotic Embryos of Cabbage (Brassica oleracea var. capitata) and Cauliflower (Brassica oleracea var. botrytis). Plant Cell Tiss. Org., 113(3), 397–406.

    Article  CAS  Google Scholar 

  29. R R.R. AND DUTTA, G.S. (2006) High-Frequency Plant Regeneration through Cyclic Secondary Somatic Embryogenesis in Black Pepper (Piper nigrum L.). Plant Cell Rep., 24(12), 699–707.

    Article  Google Scholar 

  30. MURTHY, H.N., HAHN, E.J. AND PAEK, K. Y. (2008) Recurrent Somatic Embryogenesis and Plant Regeneration in Coriandrum sativum L. Sci. Hort, 118(2), 168–171.

    Article  CAS  Google Scholar 

  31. NTNKOVIC, S., MILJUS-DJUKIC, J. AND NESKOVIC, M. (1995) Genetic Transformation of Alfalfa Somatic Embryos and their Clonal Propagation through Repetitive Somatic Embryogenesis. Plant Cell Tiss. Org., 42(3), 255–260.

    Article  Google Scholar 

  32. STEINMACHER, D.A., GUERRA, M.P, SAARE-SURMTNSKI, K. AND LIEBEREI, R. (2011) A Temporary Immersion System Improves In Vitro Regeneration of Peach Palm Through Secondary Somatic Embryogenesis. Ann. Bot, 108, 1463–1475.

    Article  CAS  Google Scholar 

  33. AROKIARAJ, P., JONES, H, JAAFAR, H, Coomber S. AND CHARLWOOD, B.V (1997) Agrobacterium -mediated transformation of Hevea anthers callus and their regeneration into plantlets. J. nat. Rubber Res., 11(2), 77–87.

    Google Scholar 

  34. MONTORO P., TEINSEREE N., RATTANA W., KONGSAWADWORAKUL P. AND MICHAUX-FERRIERE, N. (2000) Effect of Exogenous Calcium on Agrobacterium Mediated Gene Transfer in Hevea brasiliensis (rubber tree) Friable Calli. Plant Cell Rep., 19(9), 851–855.

    Article  CAS  Google Scholar 

  35. JAYASHREE, R., REKHA, K., VENKATACHALAM, P, URATSU, S.L., DANDEKAR, A.M., KUMARI JAYASREE, PK., KALA, R.G., PRIYAP, KUMARI, S.S., SOBHA, S. AND ASHOKAN, M.P. (2003) Genetic Transformation and Regeneration of Rubber Tree (Hevea brasiliensis Muell. Arg) Transgenic Plants with a Constitutive Version of an Anti-Oxidative Stress Superoxide Dismutase Gene. Plant Cell Rep., 22(3), 201–209.

    Article  CAS  Google Scholar 

  36. KALA, R.G., ANU, K.S., MANESH, K., SALEENA, A., JAYASREE, PK., NARAYANAN, P.R., THOMAS, G. AND THULASEEDHARAN, A. (2006) Agrobacterium Mediated Genetic Transformation in Hevea brasiliensis form Recombinant Protein Production. J. Plantation Crops, 34(3), 582–586.

    Google Scholar 

  37. HUANG, T.D., LI, Z., SUN, A.H., ZHOU, Q.N., HUA, Y.W. AND HUANG, H.S. (2010) Establishment of Agrobacterium tumefaciens-Mediated Anther Calli Transformation System in Hevea brasiliensis. Acta. Agron. Sin., 36(10), 1691–1697 (in Chinese, with summary in English).

    CAS  Google Scholar 

  38. ABDOLLAHI, M.R, MOIENI, A., MOUSAVI, A. AND SALMANIAN, A.H. (2011) High Frequency Production of Rapeseed Transgenic Plants via Combination of Mcroprojectile Bombardment and Secondary Embryogenesis of Microspore-Derived Embryos. Mol. Biol. Rep., 38(2), 711–719.

    Article  CAS  Google Scholar 

  39. ALVAREZ, R., ALONSO, P., CORTIZO, M., CELESTINO, C., HERNANDEZ, I., TORIBIO, M. AND ORDAS, R.J. (2004) Genetic Transformation of Selected Mature Cork Oak (Quercus suber L.) Trees. Plant Cell Rep., 23(4), 218–223.

    Article  CAS  Google Scholar 

  40. CLÉMENT-DEMANGE, A., PRIYA-DARSHAN, P.M., HOU, T.T. AND VEN-KATACHAL, P (2007) Hevea Rubber Breeding and Genetics. Plant Breeding Rev, 29, 177–283.

    Article  Google Scholar 

  41. ONG, S.H. AND SUBRAMANIAM, S. (1973) Mutation Breeding in Hevea brasiliensis Muell. Arg. Induced Mutations in Vegetatively Propagated Plants. Iaea, Vienna.

    Google Scholar 

  42. MARKOSE, VC, PANIKKAR, A.O.N, ANNAMMA, Y AND NAIR, V.K.B. (1977) Effect of Gamma Rays on Rubber Seeds, Germination, Seedling Growth and Morphology. J. Rubb. Res. Inst Sri Lanka, 54, 50–64.

    Google Scholar 

  43. KARP, A. (1995) Somaclonal Variation as a Tool for Crop Improvement. Euphytica, 85(1), 295–302.

    Article  Google Scholar 

  44. RANI, V AND RAINA, S.N. (2000) Genetic Fidelity of Organized Meristem-Derived Mcropropagated Plants: ACritical Reappraisal. In Vitro Cell Dev. B, 36(5), 319–330.

    Article  CAS  Google Scholar 

  45. PEREDO, E.L., REVILLA, M.A. AND ARROYO-GARCIA, R. (2006) Assessment of Genetic and Epigenetic Variation in Hop Plants Regenerated from Sequential Subcultures of Organogenic Calli. J. Plant Physiol., 163(10), 1071–1079.

    Article  CAS  Google Scholar 

  46. DEVI, S.P., KUMARIA, S., RAO, S.R. AND TANDON, P. (2014) Single Primer Amplification (SPAR) Methods Reveal Subsequent Increase in Genetic Variations in Micropropagated Plants of Nepenthes khasiana Hook. F. Maintained for Three Consecutive Regenerations. Gene., 538(1), 23–29.

    Article  CAS  Google Scholar 

  47. WANG, Q.M. AND WANG, L. (2012) An Evolutionary View of Plant Tissue Culture: Somaclonal Variation and Selection. Plant Cell Rep., 31(9), 1535–1547.

    Article  CAS  Google Scholar 

  48. SUN, S.L., ZHONG, J.Q., LI, S.H. AND WANG, X.J. (2013) Tissue Culture-Induced Somaclonal Variation of Decreased Pollen Viability in Torenia (Torenia fournieri Lind.). Bot. Stud, 54(1), 36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. S. Huang or Y. W. Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T.D., Huang, T.D., Huang, H.S. et al. Origin of Secondary Somatic Embryos and Genetic Stability of the Regenerated Plants in Hevea brasiliensis. J Rubber Res 20, 101–116 (2017). https://doi.org/10.1007/BF03449145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03449145

Keywords

Navigation