Journal of Rubber Research

, Volume 20, Issue 2, pp 101–116 | Cite as

Origin of Secondary Somatic Embryos and Genetic Stability of the Regenerated Plants in Hevea brasiliensis

  • T. D. Wang
  • T. D. Huang
  • H. S. HuangEmail author
  • Y. W. HuaEmail author


Micropropagation by secondary embryogenesis had been established in Hevea brasiliensis. However, origin and development of secondary embryos and genetic stability of the regenerated plants remained unclear. Visual and cytological observations found secondary embryos mainly arose from epidermal cells of cotyledons and might originate from single cells. The number of pro-embryos (45.00) peaked after 20 days of cultivation for cell differentiation. At the maturation STAGE, the sum of immature embryos including globular, heart-Like, and torpedo-liked secondary embryos (22.50) was approximately equal to the number of cotyledonary embryos (21.75), which was much lower than that of pro-embryos (45.00), indicating a great number of pro-embryos were not able to convert into cotyledonary embryos under the current culture conditions. Evaluation of the genetic stability through chromosome number counting and EST-SSRs fingerprint, showed the chromosome number of the regenerated plants was similar to the mother tree (2n=36), the variation rates of EST-SSRs loci and the regenerated plants initially increased and then decreased with multiplication cycles, and the variation rate of EST-SSRs loci was considered low (<2.61%), indicating the genome remained stable during multiplications. These results could further improve secondary embryogenesis system and inquire into its potential applications in H. brasiliensis.


Cellular origin secondary embryo somaclonal variation chromosome number EST-SSRs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WANG, Z., XENG, Z., CHEN, G, WU, H., LI, Q., FAN, G. AND LU, W. (1980) Induction of Rubber Plantlets from Anther of Hevea brasiliensis Muell-Arg In Vitro. Chinese J. Trop. Crops, 1, 25–26. (in Chinese, with summary in English).Google Scholar
  2. 2.
    CARRON M.P. AND ENJALRIC, F. (1982) Studies on Vegetative Micropropagation of Hevea brasiliensis by Somatic Embryogenesis and In Vitro Microcutting. In: A. Fujiwara (ed.), Plant Tissue Culture. Tokyo: Maruzen, 751–752.Google Scholar
  3. 3.
    LIU, S.Q., YUAN, X.H., HUANG, X. AND XU, L.Y. (1985) Comparative Studies on Yield and Properties of Juvenile Type and its Mature Type Clones. Trop. Crop Res., 3, 1–5. (in Chinese, with summary in English).Google Scholar
  4. 4.
    CHEN, X.T., WANG, Z.Y, WU, H.D., XIE, Y.P. AND ZHENG, R.W. (1998) In Vitro Mcropropagation of Juvenile Self-Root Clones of Hevea brasiliensis. Acta Agronom Sin, 24(2), 225–230. (in Chinese, with summary in English).Google Scholar
  5. 5.
    CHEN, X.T., WANG, Z.Y, WU, H.D. AND ZHANG, X.J. (2002) A New Planting Material of Hevea brasiliensis — Self-Rooting Juvenile-Type Clone. Chinese J. Trop. Crops, 23(1), 19–23 (in Chinese, with summary in English).Google Scholar
  6. 6.
    YUAN, X.H., YANG, S.Q., XU, L.Y, WU, J.L. AND HAO, B.Z. (1998) Charactenstics Related to Higher Rubber Yield of Hevea brasiliensis Juvenile-Type Clone Gll. J. Rubb. Res., 1(2), 1–2.Google Scholar
  7. 7.
    LARDET, L., LECONTE, A., BOKO, C., DEA, B.G, KELI, J. AND CARRON, M.P. (2001) Field Growth and Rubber Yield of Hevea brasiliensis (Muell.-Arg.) from Budded Versus In Vitro Micropropagated Plants from Clone IRCA 18. In: First International Symposium on Acclimatization and Establishment of Mcropropagated Plants. Sam-Halkidiki, 283–293.Google Scholar
  8. 8.
    CARRON, M.P., GRANET, F. AND KELI, J. (2007) Budding from Rejuvenated Clones”: A Good Compromise between Micropropagation and Conventional Budding. In: International Rubber Conference, Siem Reap, Cambodia, 367–373.Google Scholar
  9. 9.
    ETIENNE, H., LARTAUD, M., Michaux-FERRIERE, N., CARRON, M.P., BERTHOULY, M. AND TEISSON, C. (1997) Improvement of Somatic Embryogenesis in Hevea brasiliensis (Mull. Arg) Using the Temporary Immersion Technique. In Vitro Cell Dev. Biol-Plant, 33(2), 81–87.CrossRefGoogle Scholar
  10. 10.
    ASOKAN, M.P., KUMARI JAYASREE, P., THOMAS, V., SUSHAMA KUMARI, S., KALA, R.G., JAYASREE, R., SETHURAJ, M.R. AND THULASEEDHARAN, A. (2002) Influence of 2, 4-D and Sucrose on Repetitive Embryogenesis in Rubber (Hevea brasiliensis Muell. Arg. cv GT1). J. Tree Sci., 21(1–2), 18–26.Google Scholar
  11. 11.
    KALA, R.G., KURUVILA, L. AND JAYASREE KUMARI, P. (2008) Secondary Embryogenesis and Plant Regeneration from Leaf Derived Somatic Embryo of Hevea brasiliensis. J. Plantation Crops, 36(3), 218–222.Google Scholar
  12. 12.
    HUA, Y.W., HUANG, T.D. AND HUANG, H.S. (2010) Micropropagation of Self-Rooting Juvenile Clones by Secondary Somatic Embryogenesis in Hevea brasiliensis. Plant Breed., 129(2), 202–207.CrossRefGoogle Scholar
  13. 13.
    BLANC, G., BAPTISTE, C., OLIVER, G., MARTIN, F. AND MONTORO, P. (2006) Efficient Agrobacterium tumefaciens-Mediated Transformation of Embryogenie Calli and Regeneration of Hevea brasiliensis Mull Arg. Plants. Plant Cell Rep., 24(12), 724–733.CrossRefGoogle Scholar
  14. 14.
    RAEMAKERS, C.J.J.M., JACOBSEN, E. AND VISSER, R.G.F. (1995) Secondary Somatic Embryogenesis and Applications in Plant Breeding. Euphytica, 81(1), 93–107.CrossRefGoogle Scholar
  15. 15.
    HAISEL, D., HOFMAN, P., VAGNER, M., LIPAVSKA, H., TICHA, I, SCHÄFER, C. AND CAPKOVA, V. (2001) Ex Vitro Phenotype Stability is Affected By In Vitro Cultivation. Biol. Plantarum, 44(3), 321–324.CrossRefGoogle Scholar
  16. 16.
    LANDEY, R.B., CENCI, A., GEORGET, F., BERTRAND, B., CAMAYO, G., DECHAMP, E., HERRERA, J.C., SANTONI, S., LASHERMES, P., SIMPSON, J. AND ETIENNE, H. (2013) High Genetic and Epigenetic Stability in Coffea Arabica Plants Derived from Embryogenic Suspensions and Secondary Embryogenesis as Revealed by Aflp, MSAP and the Phenotypic Variation Rate. PLOSONE, 8(2).Google Scholar
  17. 17.
    LARKIN, P.J. AND SCOWCROFT, W.R. (1981) Somaclonal Variation: A New Source of Variability from Cell Cultures for Plant Improvement. Theor. Appl. Genet, 60(2), 60–4.Google Scholar
  18. 18.
    KARP, A., JONES, M.G.K., FOULGER D., FISH, N AND BRICHT, S.W.J. (1989) Variability in Potato Tissue Culture. Am. Potato J., 66(10), 669–684.CrossRefGoogle Scholar
  19. 19.
    ORTON, T.J. (1980) Chromosomal Variability in Tissue Cultures and Regenerated Plants of Hordeum. Theor. Appl. Genet, 56(3), 101–112.CrossRefGoogle Scholar
  20. 20.
    MIYAO, A., NAKAGOME, M., OHNUMA, T., YAMAGATA, H., KANAMORI, H., KATAYOSE, Y, TAKAHASHI, A., MATSUMOTO, T. AND HIROCHIKA, H. (2012) Molecular Spectrum of Somaclonal Variation in Regenerated Rice Revealed By Whole-Genome Sequencing. Plant Cell Physio., 53(1), 256–264.CrossRefGoogle Scholar
  21. 21.
    RODRIGUEZ LOPEZ, C.M., WETTEN, A.C. AND WILKINSON, M.J. (2010) Progressive Erosion of Genetic and Epigenetic Variation in Callus-Derived Cocoa (Theobroma cacao) Plants. New Phytol, 186(4), 856–868.CrossRefGoogle Scholar
  22. 22.
    MIGUEL, C. AND MARUM, L. (2011) An Epigenetic View of Plant Cells Cultured In Vitro: Somaclonal Variation and Beyond. J. Exp. Bot, 62(11), 3713–3725.CrossRefGoogle Scholar
  23. 23.
    MCKENZIE, N., WEN, L.Y AND DALE, J. (2002) Tissue-Culture Enhanced Transposition of the Maize Transposable Element Dissociation in Brassica oleracea var. ‘Italica’. Theor. Appl. Genet., 105(1), 23–33.CrossRefGoogle Scholar
  24. 24.
    CARRON, M.P, LARDET, L., LECONTE, A, DEA, B.G, KELI, J., GRANET, F., JULIEN, J., TEERAWATANASUK, K. AND MONTORO, P. (2009) Field Trials Network Emphasizes the Improvement of Growth and Yield Through Mcropropagation in Rubber Tree (Hevea brasiliensis, Muell.-Arg.) In: 111 International Symposium on Acclimatization and Establishment of Mcropropagated Plants 8/12, 2007 September 12. Acta. Hort, 812, 485–492.CrossRefGoogle Scholar
  25. 25.
    JOHANSEN, D.A. (1940) Plant Mcrotech-nique. London: Mc Graw Hill Book Co.Google Scholar
  26. 26.
    BASSAM, B., CAETANO-ANOLLES, G AND GRESSHOFF, P.M. (1991) Fast and Sensitive Silver Staining of DNA in Polyacrylamide Gels. Analyt Biochem., 196(1), 80–83.CrossRefGoogle Scholar
  27. 27.
    UZELAC, B., NINKOVIC, S., SMTGOCKI, A. AND BUDIMIR, S. (2007) Origm and Development of Secondary Somatic Embryos in Transformed Embryogenie Cultures of Medicago Sativa. Biol. Plantarum, 51(1), 1–6.CrossRefGoogle Scholar
  28. 28.
    PAVLOVIC, S., VRNTERHALTER B., ZDRAVKOVIC-KORAC, S., VINTERHALTER D., ZDRAVKOVIC, I, CVIKIC, D. AND MITIC, N. (2013) Recurrent Somatic Embryogenesis and Plant Regeneration from Immature Zygotic Embryos of Cabbage (Brassica oleracea var. capitata) and Cauliflower (Brassica oleracea var. botrytis). Plant Cell Tiss. Org., 113(3), 397–406.CrossRefGoogle Scholar
  29. 29.
    R R.R. AND DUTTA, G.S. (2006) High-Frequency Plant Regeneration through Cyclic Secondary Somatic Embryogenesis in Black Pepper (Piper nigrum L.). Plant Cell Rep., 24(12), 699–707.CrossRefGoogle Scholar
  30. 30.
    MURTHY, H.N., HAHN, E.J. AND PAEK, K. Y. (2008) Recurrent Somatic Embryogenesis and Plant Regeneration in Coriandrum sativum L. Sci. Hort, 118(2), 168–171.CrossRefGoogle Scholar
  31. 31.
    NTNKOVIC, S., MILJUS-DJUKIC, J. AND NESKOVIC, M. (1995) Genetic Transformation of Alfalfa Somatic Embryos and their Clonal Propagation through Repetitive Somatic Embryogenesis. Plant Cell Tiss. Org., 42(3), 255–260.CrossRefGoogle Scholar
  32. 32.
    STEINMACHER, D.A., GUERRA, M.P, SAARE-SURMTNSKI, K. AND LIEBEREI, R. (2011) A Temporary Immersion System Improves In Vitro Regeneration of Peach Palm Through Secondary Somatic Embryogenesis. Ann. Bot, 108, 1463–1475.CrossRefGoogle Scholar
  33. 33.
    AROKIARAJ, P., JONES, H, JAAFAR, H, Coomber S. AND CHARLWOOD, B.V (1997) Agrobacterium -mediated transformation of Hevea anthers callus and their regeneration into plantlets. J. nat. Rubber Res., 11(2), 77–87.Google Scholar
  34. 34.
    MONTORO P., TEINSEREE N., RATTANA W., KONGSAWADWORAKUL P. AND MICHAUX-FERRIERE, N. (2000) Effect of Exogenous Calcium on Agrobacterium Mediated Gene Transfer in Hevea brasiliensis (rubber tree) Friable Calli. Plant Cell Rep., 19(9), 851–855.CrossRefGoogle Scholar
  35. 35.
    JAYASHREE, R., REKHA, K., VENKATACHALAM, P, URATSU, S.L., DANDEKAR, A.M., KUMARI JAYASREE, PK., KALA, R.G., PRIYAP, KUMARI, S.S., SOBHA, S. AND ASHOKAN, M.P. (2003) Genetic Transformation and Regeneration of Rubber Tree (Hevea brasiliensis Muell. Arg) Transgenic Plants with a Constitutive Version of an Anti-Oxidative Stress Superoxide Dismutase Gene. Plant Cell Rep., 22(3), 201–209.CrossRefGoogle Scholar
  36. 36.
    KALA, R.G., ANU, K.S., MANESH, K., SALEENA, A., JAYASREE, PK., NARAYANAN, P.R., THOMAS, G. AND THULASEEDHARAN, A. (2006) Agrobacterium Mediated Genetic Transformation in Hevea brasiliensis form Recombinant Protein Production. J. Plantation Crops, 34(3), 582–586.Google Scholar
  37. 37.
    HUANG, T.D., LI, Z., SUN, A.H., ZHOU, Q.N., HUA, Y.W. AND HUANG, H.S. (2010) Establishment of Agrobacterium tumefaciens-Mediated Anther Calli Transformation System in Hevea brasiliensis. Acta. Agron. Sin., 36(10), 1691–1697 (in Chinese, with summary in English).Google Scholar
  38. 38.
    ABDOLLAHI, M.R, MOIENI, A., MOUSAVI, A. AND SALMANIAN, A.H. (2011) High Frequency Production of Rapeseed Transgenic Plants via Combination of Mcroprojectile Bombardment and Secondary Embryogenesis of Microspore-Derived Embryos. Mol. Biol. Rep., 38(2), 711–719.CrossRefGoogle Scholar
  39. 39.
    ALVAREZ, R., ALONSO, P., CORTIZO, M., CELESTINO, C., HERNANDEZ, I., TORIBIO, M. AND ORDAS, R.J. (2004) Genetic Transformation of Selected Mature Cork Oak (Quercus suber L.) Trees. Plant Cell Rep., 23(4), 218–223.CrossRefGoogle Scholar
  40. 40.
    CLÉMENT-DEMANGE, A., PRIYA-DARSHAN, P.M., HOU, T.T. AND VEN-KATACHAL, P (2007) Hevea Rubber Breeding and Genetics. Plant Breeding Rev, 29, 177–283.CrossRefGoogle Scholar
  41. 41.
    ONG, S.H. AND SUBRAMANIAM, S. (1973) Mutation Breeding in Hevea brasiliensis Muell. Arg. Induced Mutations in Vegetatively Propagated Plants. Iaea, Vienna.Google Scholar
  42. 42.
    MARKOSE, VC, PANIKKAR, A.O.N, ANNAMMA, Y AND NAIR, V.K.B. (1977) Effect of Gamma Rays on Rubber Seeds, Germination, Seedling Growth and Morphology. J. Rubb. Res. Inst Sri Lanka, 54, 50–64.Google Scholar
  43. 43.
    KARP, A. (1995) Somaclonal Variation as a Tool for Crop Improvement. Euphytica, 85(1), 295–302.CrossRefGoogle Scholar
  44. 44.
    RANI, V AND RAINA, S.N. (2000) Genetic Fidelity of Organized Meristem-Derived Mcropropagated Plants: ACritical Reappraisal. In Vitro Cell Dev. B, 36(5), 319–330.CrossRefGoogle Scholar
  45. 45.
    PEREDO, E.L., REVILLA, M.A. AND ARROYO-GARCIA, R. (2006) Assessment of Genetic and Epigenetic Variation in Hop Plants Regenerated from Sequential Subcultures of Organogenic Calli. J. Plant Physiol., 163(10), 1071–1079.CrossRefGoogle Scholar
  46. 46.
    DEVI, S.P., KUMARIA, S., RAO, S.R. AND TANDON, P. (2014) Single Primer Amplification (SPAR) Methods Reveal Subsequent Increase in Genetic Variations in Micropropagated Plants of Nepenthes khasiana Hook. F. Maintained for Three Consecutive Regenerations. Gene., 538(1), 23–29.CrossRefGoogle Scholar
  47. 47.
    WANG, Q.M. AND WANG, L. (2012) An Evolutionary View of Plant Tissue Culture: Somaclonal Variation and Selection. Plant Cell Rep., 31(9), 1535–1547.CrossRefGoogle Scholar
  48. 48.
    SUN, S.L., ZHONG, J.Q., LI, S.H. AND WANG, X.J. (2013) Tissue Culture-Induced Somaclonal Variation of Decreased Pollen Viability in Torenia (Torenia fournieri Lind.). Bot. Stud, 54(1), 36.CrossRefGoogle Scholar

Copyright information

© The Malaysian Rubber Board 2017

Authors and Affiliations

  1. 1.Hainan Sanya Crop Breeding Trail CenterXinjiang Academy of Agriculture ScienceÜrümqi, XinjiangChina
  2. 2.Key Laboratory of Biology and Genetic Resources of Rubber Tree of Ministry of Agriculture, Rubber Research InstituteChinese Academy of Tropical Agricultural SciencesDanzhou, HainanChina

Personalised recommendations