Advertisement

Canadian Journal of Public Health

, Volume 101, Issue 4, pp I5–I9 | Cite as

The UV Index: Definition, Distribution and Factors Affecting It

  • Vitali FioletovEmail author
  • James B. Kerr
  • Angus Fergusson
Mixed Research
  • 5 Downloads

Abstract

The UV Index was introduced in Canada in 1992 in response to growing concerns about the potential increase of ultraviolet (UV) radiation due to ozone depletion. The index was adopted as a standard indicator of UV levels by the World Meteorological Organization and World Health Organization in 1994. This survey article gives an overview of the UV Index and the main features of its geographical distribution.

UV index values are determined from measurements made by ground-based spectrometers, broad-band filter radiometers and multi-filter radiometers. Radiative transfer models are used to estimate UV Index values from other types of geophysical observations, primarily column ozone and cloud thickness. UV Index values can also be retrieved from satellite measurements of atmospheric ozone and cloud cover. Forecasts of UV Index values are now widely available and are intended to be used by the public as a guide to avoid excessive exposure to UV radiation.

Over the UV and Canada, mean noontime UV Index values in summer range from 1.5 in the Arctic to 11.5 over southern Texas and can be as high as 20 at high elevations in Hawaii. The UV Index is also often used to quantify UV levels in studies investigating the impact of UV on other biological and photochemical processes. Factors affecting the UV Index, such as the sun elevation, total amount of ozone in the atmosphere, cloud cover, reflection from snow and local pollution, are also discussed.

Since its introduction in 1992, the UV Index has become a widely used parameter to characterize solar UV. Information about it can be useful for helping people avoid excessive levels of UV radiation.

Key words

UV Index ozone solar UV UV radiation 

Résumé

L’indice UV (ultraviolet) a été institué au Canada en 1992 en réponse aux préoccupations croissantes suscitée par l’augmentation possible des rayons ultraviolets avec l’amincissement de la couche d’ozone. Cet indice a été adopté par l’Organisation météorologique mondiale et l’Organisation mondiale de la santé en 1994 comme indicateur standard des niveaux de rayons UV. Notre article donne un aperçu de l’indice UV et des principaux attributs de sa répartition géographique.

Les valeurs de l’indice UV sont déterminées à partir des mesures prises par des spectromètres au sol, des radiomètres à large bande et des radiomètres multifiltres. Au moyen de modèles de transfert radiatif, on estime ces valeurs à partir d’autres types d’observations géophysiques, principalement la colonne d’ozone et l’épaisseur des nuages. On peut aussi les obtenir à partir des mesures satellitaires de l’ozone atmosphérique et de la couverture nuageuse. Les prévisions de l’indice UV sont maintenant largement diffusées; on veut que le public s’en serve pour éviter les expositions excessives aux rayons ultraviolets.

Pour les États-Unis et le Canada, l’indice UV moyen à midi en été varie entre 1,5 dans l’Arctique et 11,5 pour le Sud du Texas et peut atteindre 20 dans les hauteurs d’Hawaï. L’indice UV sert aussi souvent à chiffrer les niveaux de rayonnement ultraviolet dans les études portant sur l’incidence des rayons UV sur d’autres processus biologiques et photochimiques. Les facteurs qui influent sur l’indice UV, comme la hauteur du soleil, la quantité totale d’ozone dans l’atmosphère, la couverture nuageuse, la réflexion des rayons sur la neige et la pollution locale, sont également abordés.

Depuis son adoption en 1992, l’indice UV est devenu un paramètre très utilisé pour caractériser les ultraviolets solaires. L’information à ce sujet peut être utile pour aider les gens à éviter les niveaux d’exposition excessifs aux rayons ultraviolets.

Mots clés

indice UV ozone ultraviolets solaires rayons ultraviolets 

References

  1. 1.
    Kerr JB, McElroy CT, Wardle DI, Olafson RA, Evans WFJ. The automated Brewer spectrophotometer. In: Zerefos CS, Ghazi A (Eds.), Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium. Boston, MA: Reidel, 1985;396–401.CrossRefGoogle Scholar
  2. 2.
    Seckmeyer G, Bais A, Bernhard G, Blumthaler M, Booth CR, Lantz K, McKenzie RL. Instruments to measure solar ultraviolet irradiance, Part 2: Broadband instruments measuring erythemally weighted solar irradiance, World Meteorological Organization. Global Atmospheric Watch 2005;16(4):4.Google Scholar
  3. 3.
    Fioletov VE, McArthur LJB, Kerr JB, Wardle DI. Long-term variations of UV-B irradiance over Canada estimated from Brewer observations and derived from ozone and pyranometer measurements. J Geophys Res 2001;106:23009–27.CrossRefGoogle Scholar
  4. 4.
    Lindfors A, Vuilleurmier L. Erythemal UV at Davos (Switzerland), 1926–2003, estimated using total ozone, sunshine duration, and snow depth. J Geophys Res 2005;110(D2):D02104.1–D02104.15.CrossRefGoogle Scholar
  5. 5.
    Herman JR, Krotkov N, Celarier E, Larko D, Labow G. Distribution of UV radiation from TOMS-measured UV-backscattered radiances. J Geophys Res 1999;104:12059–76.CrossRefGoogle Scholar
  6. 6.
    McKenzie R, Seckmeyer G, Bais A, Kerr J, Madronich S. Satellite-retrievals of erythemal UV dose compared with ground-based measurements at Northern and Southern mid-latitudes. J Geophys Res 2001;106:24051–62.CrossRefGoogle Scholar
  7. 7.
    Fioletov VE, Kerr JB, Wardle DI, Krotkov NA, Herman JR. Comparison of Brewer UV irradiance measurements with TOMS satellite retrievals. Opt Eng 2002;41:3051–61.CrossRefGoogle Scholar
  8. 8.
    Tanskanen A, Lindfors A, Määttä A, Krotkov N, Herman J, Kaurola J, et al. Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data. J Geophys Res 2007;112:D24S44. doi:10.1029/2007JD008830.CrossRefGoogle Scholar
  9. 9.
    DeLand MT, Cebula RP, Hilsenrath E. Observations of solar spectral irradiance change during cycle 22 from NOAA-9 Solar Backscatter Ultraviolet Model 2 (SBUV/2). J Geophys Res 2004;109, D06304. doi: 10.1029/2003JD004074.CrossRefGoogle Scholar
  10. 10.
    Fioletov VE, Kerr JB, McArthur LJB, Wardle DI, Mathews TW. Estimating UV Index climatology over Canada. J Appl Meteorol 2003;42:417–33.CrossRefGoogle Scholar
  11. 11.
    Krueger AJ, Walter LS, Bhartia PK, Schnetzler CC, Krotkov NA, Sprod I, Bluth GJS. Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments. J Geophys Res 1995;100:14057–76.CrossRefGoogle Scholar
  12. 12.
    di Sarra A, Cacciani M, Chamard P, Cornwall C, DeLuisi JJ, Di Iorio T, et al. Effects of desert dust and ozone on the ultraviolet irradiance at the Mediterranean island of Lampedusa during PAUR II: Photochemical activity and ultraviolet radiation (PAUR). J Geophys Res 2002;107, D18. doi: 10.1029/2000JD000139.Google Scholar
  13. 13.
    Kirchhoff VWJH, Silva AA, Costa CA, Paes Leme N, Pavao HG, Zaratti F. UV-B optical thickness observations of the atmosphere. J Geophys Res 2001;106:2963–73.CrossRefGoogle Scholar
  14. 14.
    Webb AR, Kylling A, Wendisch M, Jakel E. Airborne measurements of ground and cloud spectral albedos under low aerosol loads. J Geophys Res 2004;109,D20. doi:10.1029/2004JD004768.Google Scholar
  15. 15.
    Wendisch M, Pilewskie P, Jakel E, Schmidt S, Pommier J, Howard S, et al. Airborne measurements of areal spectral albedo over different sea and land surfaces. J Geophys Res 2004;109,D8. doi:10.1029/2003JD004392.CrossRefGoogle Scholar
  16. 16.
    Parisi AV, Sabburg J, Kimlin MG, Downs N. Measured and modeled contributions to UV exposures by the albedo of surfaces in an urban environment. Theor Appl Climatol 2003;76:181–88.CrossRefGoogle Scholar
  17. 17.
    Arola A, Kaurola J, Koskinen L, Tanskanen A, Tikkanen T, Taalas P, et al. A new approach to estimating the albedo for snow-covered surfaces in the satellite UV method. J Geophys Res 2003;108,D17. doi:10.1029/2003JD003492.Google Scholar
  18. 18.
    Huber M, Blumthaler M, Schreder J, Schallhart B, Lenoble J. Effect of inhomogeneous surface albedo on diffuse UV sky radiance at a high-altitude site. J Geophys Res 2004;109,D8:D08107.1-D0817.7.CrossRefGoogle Scholar
  19. 19.
    Schmucki DA, Philipona R. Ultraviolet radiation in the Alps: The altitude effect. Opt Eng 2002;41:3090–95.CrossRefGoogle Scholar
  20. 20.
    Zaratti F, Forno RN, Fuentes JG, Andrade MF. Erythemally weighted UV variations at two high-altitude locations. J Geophys Res 2003;10(8):8.Google Scholar
  21. 21.
    Bodhaine BA, Dutton EG, Hofmann DJ, McKenzie RL, Johnston PV. Spectral UV measurements at Mauna Loa: July 1995–July 1996. J Geophys Res 1997;102:19265–73.CrossRefGoogle Scholar
  22. 22.
    Tarasick DW, Fioletov VE, Wardle DI, Kerr JB, McArthur LJB, McLinden CA. Climatology and trends of surface UV radiation (survey article). Atmos Ocean 2003;41:121–38.CrossRefGoogle Scholar
  23. 23.
    Liley JB, McKenzie RL. Where on Earth has the highest UV. In: National Institute of Water & Atmospheric Research, UV Radiation and its Effects: An Update (2006). Workshop Proceedings. 2006;26–37.Google Scholar
  24. 24.
    Fioletov VE, Kimlin MG, Krotkov N, McArthur LJB, Kerr JB, Wardle EI, et al. UV Index climatology over the United States and Canada from ground-based and satellite estimates. J Geophys Res 2004;109:D22:D22308.1-D22308.13.CrossRefGoogle Scholar
  25. 25.
    Krzyścin JW, Eerme K, Janouch M. Long-term variations of the UV-B radiation’s over Central Europe derived from reconstructed UV time series. Ann Geophys 2004;22:1473–85.CrossRefGoogle Scholar
  26. 26.
    Chubarova NY, Nezval YI, Verdebout J, Krotkov N, Herman J. Long-term UV irradiance changes over Moscow and comparisons with UV estimates from TOMS and METEOSAT. In: Bernhard G, Slusser JR, Gao W, Herman JR (Eds.), Ultraviolet Ground- and Space-based Measurements, Models, and Effects V (Proceedings of SPIE). San Diego, CA, 2005;1–11.Google Scholar
  27. 27.
    Zerefos C, Meleti C, Balis D, Tourali K, Bais AF. Quasi-biennial and longer-term changes in clear sky UV-B solar irradiance. Geophys Res Lett 1998;25:4345–48.CrossRefGoogle Scholar
  28. 28.
    Kerr JB, Seckmeyer G, Bais AF, Bernhard G, Blumthaler M, Diaz SB, et al. Surface ultraviolet radiation: Past and future. In: Scientific Assessment of Ozone Depletion: 2002. Global Ozone Research and Monitoring Project — Report No. 47. Geneva, Switzerland: World Meteorological Organization, 2003;ch. 5.Google Scholar
  29. 29.
    Kerr JB. Decreasing ozone causes health concern: How Canada forecasts ultra-violet-B radiation. Environ Sci Technol 1994;29:514–18.CrossRefGoogle Scholar
  30. 30.
    World Health Organization. Global Solar UV Index, A Practical Guide. WHO/SDE/OEH/02.2. Geneva, Switzerland: WHO, 2002; 28pp.Google Scholar
  31. 31.
    Kerr JB, Fioletov VE. Surface ultraviolet radiation. Atmos Ocean 2008;46:159–84.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2010

Authors and Affiliations

  • Vitali Fioletov
    • 1
    Email author
  • James B. Kerr
    • 1
  • Angus Fergusson
    • 1
  1. 1.Science and Technology BranchEnvironment CanadaTorontoCanada

Personalised recommendations