Skip to main content
Log in

Numerical and experimental transition prediction on a realistic laminar swept wing

  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

This paper is aimed at providing the outcomes of an activity carried out inside an Italian National Program named VITAS (Vettore Innovativo per il Trasporto AeroSostenibile) [1]. The goal of the project was to design a transonic wing with an extended natural laminar region for a business jet (8–12 seats). Both experimental and numerical activities were carried out in order to define and verify the performance of this laminar wing. The paper will deal with the numerical activities, experimental/numerical comparison will be shown and results will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vitas project — codice univoco ricerca wsa07770, 2002–2005.

  2. D. Keith Walters and James H. Leylek. Computational fluid dynamics study of wake-induced transition on a compressor-like flat plate. Journal of Turbomachinery, 127(1):52–63, Feb 2005.

    Article  Google Scholar 

  3. Robin B. Langtry and Florian R. Menter. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal, 47(12):2894–2906, Dec 2009.

    Article  Google Scholar 

  4. Florian R. Menter, Pavel E. Smirnov, Tao Liu, and Ravikanth Avancha. A one-equation local correlation-based transition model. Flow, Turbulence and Combustion, 95(4):583–619, 2015.

    Article  Google Scholar 

  5. J. L. Van Ingen. A suggested semi-empirical method for the calculation of the boundary layer transition region. Technical Report VTH-74, University of Technology, Delft, 1956.

    Google Scholar 

  6. A.M.O. Smith and N. Gamberoni. Transition, pressure gradient and stability theory. Douglas Aircraft Company, 1956.

    Google Scholar 

  7. U. Cella, D. Quagliarella, R. S. Donelli, and B. Imperatore. Design and test of the uw-5006 transonic natural-laminar-flow wing. Journal of Aircraft, 47(3):783–795, May 2010.

    Article  Google Scholar 

  8. Metacomp Technologies Inc. CFD++ v10.1.2 R1 — User Manual.

  9. R. Houdeville. Descriptif et mode d’emploi du code 3C3D. ONERA, RT DMAE N.° 1/15066, version v5.4.2.3 edition, Nov 2009.

    Google Scholar 

  10. P. De Matteis, R. S. Donelli, and P. Luchini. Application of the ray-tracing theory to the stability analysis of three-dimensional incompressible boundary layers. In XIII AIDAA Conference, 1995.

    Google Scholar 

  11. R. S. Donelli and P. Luchini. New and emerging techniques for transition prediction. ERCOF-TAC SIG 33 Workshop, Ravello, Italy. ERCOF-TAC Bulletin, N. 48, March 2001, April 2000.

    Google Scholar 

  12. ANSYS, Inc. ANSYS ICEM CFD — User Manual.

  13. F. R. Menter. Zonal Two Equation k — ω Turbulence Models for Aerodynamic Flows. AIAA Journal, (93-2906), 1993.

    Google Scholar 

  14. Mark Drela. A User’s Guide to MSES 2.9. MIT Computational Aerospace Sciences Laboratory, October 1995.

    Google Scholar 

  15. Wind Tunnel Tests Of The UW-5006-NLF Wing. Technical Report CIRA-CF-06-0402, CIRA, 2006.

  16. L. M. Mack. On the stability of the boundary layer on a transonic swept wing. AIAA paper, 0264, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, D.G., de Rosa, D. & Donelli, R.S. Numerical and experimental transition prediction on a realistic laminar swept wing. Aerotec. Missili Spaz. 96, 63–74 (2017). https://doi.org/10.1007/BF03404738

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03404738

Navigation