Skip to main content
Log in

Discontinuous mechanical problems studied with a peridynamics-based approach

  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

The description of crack propagation in structural materials is still a great challenge because the discontinuous nature of the phenomena conflicts with the underlying mathematical structure of classical continuum mechanics. Recently a new non-local continuum theory has been proposed, Peridynamics, with the specific goal to overcome the limitations of the classical theory. Peridynamics is based on integral equations and does not make use of spatial differentiation, for these reasons it is better suited to describe problems affected by discontinuities. The paper presents a series of applications of peridynamics-based computational methods to the solution of static and dynamic structural problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Mi, M. A. Crisfield, G. A. O Davies and H. B. Hellweg, “Progressive delamination using interface elements”, J Compos Mater, Vol. 32, pp. 1246–1272, 1998.

    Article  Google Scholar 

  2. T. Belytschko, H. Chen, J. X. Xu and G. Zi, “Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment”, Int J Numer Meth Eng, Vol. 58, pp. 1873–1905, 2003.

    Article  Google Scholar 

  3. C. Miehe, M. Hofacker, and F. Welschinger, “A phase field model for rate-independent crack propagation:Robust algorithmic implementation based on operator splits”, Comput. Methods Appl. Mech. Eng., Vol. 119, pp. 2765–2778, 2010.

    Article  MathSciNet  Google Scholar 

  4. M. J. Borden, C. V. Verhoosel, M. A. Scott, T. J. R. Hughes, and C. M. Landis, “A phase-field description of dynamic brittle fracture,”, Comput. Methods Appl. Mech. Eng., Vol. 217–210, pp. 77–95, 2012.

    Article  MathSciNet  Google Scholar 

  5. L. Kosteski, B. R. D’Ambra, and I. Iturrioz, “Crack propagation in elastic solids using the truss-like discrete element method”, Int J Fract, Vol. 174, pp. 139–161, 2012.

    Article  Google Scholar 

  6. S. Silling, “Reformulation of elasticity theory for discontinuities and long-range forces”, J Mech Phys Solids, Vol. 48, pp. 175–209, 2000.

    Article  MathSciNet  Google Scholar 

  7. S. Silling, M. Epton, O. Weckner, J. Xu and E. Askari, “Peridynamic states and costitutive modeling”, J Elast, Vol. 88, pp. 151–184, 2007.

    Article  Google Scholar 

  8. S. Oterkus, E. Madenci, A. Agwai, “Fully coupled peridynamic thermomechanics”, J Mech Phys Solids, Vol. 64, pp. 1–23, 2014.

    Article  MathSciNet  Google Scholar 

  9. A. Katiyar, J. T. Foster, H. Ouchi and M. Sharma, “A peridynamic formulation of pressure driven convective fluid transport in porous media”, J Comput Phys, Vol. 261, pp. 209–229, 2014.

    Article  MathSciNet  Google Scholar 

  10. M. Zaccariotto, F. Luongo, G. Sarego and U. Galvanetto, “Examples of applications of the peridynamic theory to the solution of static equilibrium problems”, The Aeronautical J., Vol. 119, pp. 1–24, 2015.

    Article  Google Scholar 

  11. M. Duzzi, M. Zaccariotto, U. Galvanetto, “Application of Peridynamic Theory to Nanocomposite Materials”, Adv Mat Research, Vol. 1016, pp. 44–48, 2014.

    Google Scholar 

  12. D. Dipasquale, M. Zaccariotto, U. Galvanetto, “Crack propagation with adaptive grid refinement in 2D peridynamics”, Int. J. of Fracture, Vol. 190, No 1–2, pp. 1–22, 2014.

    Article  Google Scholar 

  13. Y. D. Ha, F. Bobaru, “Characteristics of dynamic brittle fracture captured with peridynamics”, Eng. Frac. Mech, Vol. 78, No 6, pp. 1156–1168, 2011.

    Article  Google Scholar 

  14. W. Hu, Y. Wang, J. Yu, C. F. Yen and F. Bobaru, “Impact damage on a thin glass plate with a thin polycarbonate backing”, Int. J Imp. Eng., Vol. 62, pp. 152–165, 2013.

    Article  Google Scholar 

  15. E. Budyn, G. Zi, N. Moes and T. Belytschko, “A method for multiple crack growth in the brittle materials without remeshing”, Int. J. Num. Meth. Engin., Vol. 61, pp. 1741–1770, 2004.

    Article  Google Scholar 

  16. E. Askari, F. Bobaru, R. Lehoucq, M. Parks, S. A. Silling and O. Weckner, “Peridynamics for multiscale materials modeling”, J Phys Conf Ser, Vol. 125, pp. 1–11, 2008.

    Article  Google Scholar 

  17. R. Rahman, J. T. Foster, “Bridging the length scales through nonlocal hierarchical multiscale modeling scheme”, Computational Materials Science, Vol. 92, pp. 401–415, 2014.

    Article  Google Scholar 

  18. V. P. Nguyen, M. Stroeven and L. J. Sluys, “Multiscale continuous modeling of heterogeneous materials: a review on recent developments”, J. Multiscale Modelling, Vol. 3, No 4, pp. 1–42, 2011.

    Article  MathSciNet  Google Scholar 

  19. D. L. Shi, X. Q. Feng, Y. Y. Huang, K. C. Hwang and H. Gao, “The effect of Nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced compositess”, J. Eng. Mater. Technol., Vol. 126, No 3, pp. 250–257, 2004.

    Article  Google Scholar 

  20. Y. L. Hu, E. Madenci,“Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence”, Composite Struct, Vol. 153, pp. 139–175, 2016.

    Article  Google Scholar 

  21. Y. L. Hu, N. V. De Carvalho, E. Madenci,“Peridynamic modeling of delamination growth in composite laminates”, Composite Struct, Vol. 132, pp. 610–620, 2015.

    Article  Google Scholar 

  22. Y. L. Hu, Y. Yu, H. Wang,“Peridynamic analytical method for progressive damage in notched composite laminates”, Composite Struct, Vol. 108, pp. 801–810, 2014.

    Article  Google Scholar 

  23. S. A. Silling, E. Askari, “A meshfree method based on the peridynamic model of solid mechanics”, Comput Struct, Vol. 83, pp. 1526–1535, 2005.

    Article  Google Scholar 

  24. M. B. Nooru-Mohamed, E. Schlangen and J. G. M. Van Mier, “Experimental and numerical study on the behavior of concrete subjected to biaxial tension and shear”, Advanced cement based materials, Vol. 1, No 1, pp. 22–37, 1993.

    Article  Google Scholar 

  25. R. W. Macek, S. A. Silling, “Peridynamics via finite element analysis”, Finite Elements in Analysis and Design, Vol. 43, pp. 1169–1178, 2007.

    Article  MathSciNet  Google Scholar 

  26. ABAQUS-Explicit Version 6. 6 User’s Manual, ABAQUS Inc., Providence, Rhode Island, 2006.

  27. B. Kilic and E. Madenci, “Coupling of peridynamic theory and the finite element method”, J. of Mech. of Mat. and Struct., Vol. 5, No 5, pp. 707–733, 2010.

    Article  Google Scholar 

  28. W. Liu and J. W. Hong, “A coupling approach of discretized peridynamics with finite element method”, Comp. Meth. in Appl. Mech. and Eng., Vol. 245–246, pp. 163–175, 2012.

    Article  MathSciNet  Google Scholar 

  29. G. Lubineau, Y. Azdoud, F. Han, C. Rey and A. Askari, “A morphing strategy to couple non-local to local continuum mechanics”, J. Mech. and Ph. of Solids, Vol. 60, No 6, pp. 1088–1102, 2012.

    Article  MathSciNet  Google Scholar 

  30. A. Shojaei, B. Boroomand, and F. Mossaiby, “A simple meshless method for challenging engineering problems”, Eng. Comput., Vol. 32, No 6, pp. 1567–1600, 2015.

    Article  Google Scholar 

  31. W. H. Gerstle, N. Sau, and S. A. Silling, “Peridynamic modeling of plain and reinforced concrete structures”, 18th International Conference on Structural Mechanics in Reactor Technology, Beijing, China, 2005.

  32. U. Galvanetto, T. Mudric, A. Shojaei, M. Zaccariotto, “An effective way to couple FEM meshes and Peridynamics grids for the solution of static equilibrium problems”, Mech Res Comm, Vol. 76, pp. 41–47, 2016.

    Article  Google Scholar 

  33. M. Zaccariotto, D. Tomasi, U. Galvanetto, “An enhanced coupling of PD grids to FE meshes”, Mech Res Comm, in press, 2017.

    Google Scholar 

  34. M. Zaccariotto, T. Mudric, D. Tomasi, A. Shojaei U. Galvanetto, “Coupling of FEM meshes with Peridynamic grids”, submitted for publication.

  35. R. H. J. Peerlings, W. A. M. Brekelmans, R. de Borst and M. G. D. Geers, “Gradient-enhanced damage modelling of highcycle fatigue”, Int. J. Num. Meth. Engin., Vol. 49, No 12, pp. 1547–1569, 2000.

    Article  Google Scholar 

  36. U. Galvanetto, P. Robinson, A. Cerioni and C. L. Armas, “A Simple Model for the Evaluation of Constitutive Laws for the Computer Simulation of Fatigue-Driven Delamination in Composite Materials”, SDHM, Vol. 5, No 2, pp. 161–189, 2009.

    Google Scholar 

  37. M. Zaccariotto, F. Luongo, G. Sarego, D. Dipasquale and U. Galvanetto, “Fatigue Crack Propagation with Peridynamics: a sensitivity study of Paris law parameters”, CEAS 2013, Innov Eur Sweden, Linkoping, Sweden 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaccariotto, M., Sarego, G., Dipasquale, D. et al. Discontinuous mechanical problems studied with a peridynamics-based approach. Aerotec. Missili Spaz. 96, 44–55 (2017). https://doi.org/10.1007/BF03404736

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03404736

Navigation