Skip to main content
Log in

Tests of Sapphire Optical Fiber Sensors for Strain Monitoring in High Temperature Environment

  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

Strain sensors based on optical fiber technology have a number of advantages over more conventional resistive strain gages. Optical fiber sensors are immune to electromagnetic interferences, resistant to corrosion, are safe to be used in explosion or fire hazard areas, and can be embedded inside materials. Commercially available solutions include the Fiber Bragg Grating (FBG) sensors and the Distributed Strain and Temperature Sensors, based on Brillouin scattering; both technologies are using fused silica optical fibers. FBG sensors application is limited to temperature up to 300 °C; solution for high temperature applications (up to 1000 °C) have been developed but are not commercially available. Sapphire optical fibers have a very high melting point (2030 °C) and are promising for high temperature monitoring. Sapphire fibers can be embedded inside metals and ceramic materials. However, even if FBG sensors can be written inside sapphire fibers with femtosecond UV lasers, there are no solutions available on the market. This work describes a test to verify the possibility of monitoring strain using a sapphire fiber embedded into a metal specimen, by monitoring the power loss of the light transmitted through the fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Paolozzi, F. Felli, M. A. Caponero, “Global temperature measurements of aluminium alloy specimens with embedded optical fibers”, Structural Health Montoring 2000, (Chang F.K.), Vol. 1, pp. 257–264, Stanford, CA, September 08–10, 1999.

    Google Scholar 

  2. A. Paolozzi, F. Felli, A. Brotzu, “Embedding optical fibers into cast aluminum alloys”, Applied mechanics in the Americas, Vol. 7, pp. 639–642, American Academy of Mechanics, 1999.

    Google Scholar 

  3. F. Felli, A. Paolozzi, M. Caponero, “Fabrication of intelligent aluminum matrix composite”, Aluminum Transactions, Vol. 2, pp. 189–194, 2000.

    Google Scholar 

  4. A. Paolozzi, F. Felli, “Broad band tests on metallic specimens by embedded optical fibers”, XVI AIDAA Conference 2001, Palermo (Italy).

    Google Scholar 

  5. M.A. Caponero, F. Felli, A. Paolozzi, I. Peroni, “Vibration tests on metal alloys with embedded optical fibers”, Smart Materials and MEMS, Proceedings of SPIE, the International Society for Optical Engineering, Vol. 4234, pp. 152–159, 2001.

    Article  Google Scholar 

  6. M. A. Caponero, F. Felli, A. Paolozzi, “Strain maesurement with FBGs embedded into cast metal alloys”, The Seventh Japan International SAMPE Symposium. Information and innovation in composites technologies, T. Ishikawa, S. Sugimoto eds., Vol. 1, pp. 661–664, Tokyo, Japan, November 13–16, 2001.

    Google Scholar 

  7. A. Paolozzi, M. A. Caponero, F. Cassese, M. Leonardi, “Use of embedded optical fibers for structural analysis”, XVII International Modal Analysis Conference (IMAC), Vol. 1, pp. 699–704, Orlando, FL, Feb. 1999.

    Google Scholar 

  8. L. Benussi, S. Bianco, S. Colafranceschi, D. Colonna, L. Daniello, F. L. Fabbri, M. Giardoni, B. Ortenzi, A. Paolozzi, et al., “The CMS RPC gas gain monitoring system: an overview and preliminary results”, Nuclear Instruments and Methods in Physics Research A, Vol. 602, pp. 805–808, 2009.

    Article  Google Scholar 

  9. L. Benussi, S. Bianco, S. Colafranceschi, F. L. Fabbri, F. Felli, M. Ferrini, M. Giardoni, T. Greci, A. Paolozzi, L. Passamonti, et al., “Study of gas purifiers for the CMS RPC detector”, Nuclear instruments & methods in physics research, Section A, accelerators, spectrometers, detectors and associated equipment, Vol. 661, pp. 241–244, 2012.

    Article  Google Scholar 

  10. M. Abbrescia, A. Colaleo, R. Guida, G. Iaselli, R. Liuzzi, F. Loddo, M. Maggi, B. Marangelli, S. Natali, S. Nuzzo, et al., “Gas analysis and monitoring systems for the RPC detector of CMS at LHC”, arXiv:physics/0701014 [physics.ins-det], December 30, 2006.

    Google Scholar 

  11. A. Cusano, P. Capoluogo, S. Campopiano, A. Cutolo, M. Giordano, M. Caponero, F. Felli, A. Paolozzi, “Dynamic measurements on a star tracker prototype of AMS using fiber optic sensors”, Smart materials and structures, Vol. 15, pp. 441–450, 2006.

    Article  Google Scholar 

  12. A. Paolozzi, P. Gasbarri, “Dynamic analysis with fibre optic sensors for Structural Health Monitoring”, NATO-RTO-AVT. Multifunctional Structures / Integration of Sensors and Antennas, pp. 9.1–9.24, Vilnius, Lituania, 2–6 October, 2006.

    Google Scholar 

  13. L. Benussi, M. Bertani, S. Bianco, M. A. Caponero, F. Fabbri, F. Felli, M. Giardoni, A. La Monaca, E. Pace, M. Pallotta, A. Paolozzi, “Use of Fiber Bragg Gratings sensors for position monitoring in high energy physics experiment BTeV”, IEEE Sensor 2002, pp. 874–879, Orlando FL, USA, June 11–14, 2002.

    Google Scholar 

  14. C. Vendittozzi, G. Sindoni, C. Paris, P. Persi del Marmo, “Application of an FBG sensors system for structural health monitoring and high performance trimming on racing yacht”, Fifth International Conference on Sensing Technology (ICST), pp. 617–622, Palmerston North, New Zealand, 28 Nov.–01 Dec. 2011.

    Google Scholar 

  15. F. Felli, A. Paolozzi, C. Vendittozzi, C. Paris, H. Asanuma, “Use of FBG sensors for health monitoring of pipelines”, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016, Proc. of SPIE, Vol. 9803, 2016.

  16. A. Paolozzi, F. Felli, C. Vendittozzi, C. Paris, H. Asanuma, “Analysis of FBG sensors data for pipeline monitoring”, ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS2016, Stowe, VT, USA, September 28–30, 2016.

    Google Scholar 

  17. L. Benussi, M. Bertani, S. Bianco, M. A. Caponero, D. Colonna, et al., “The Omega-like: a novel device using FBG sensors to position vertex detectors with micromet-ric precision”, Nuclear Physics B-Proceedings Supplements, Vol. 172, pp. 263–265, 2007.

    Article  Google Scholar 

  18. A. Bramante, M. Caponero, G. Coppotelli, M. Cotogni, A. Paolozzi, C. Paris, I. Peroni, “New technology for aerospace sensors. Satellite dynamic and thermal measurements using fiber optic FBG sensors”, Proceedings of the 6th International Symposium on Environmental Testing for Space Programmes, ESA/ESTEC, Noordwijk, The Netherlands, 12–14 June 2007.

    Google Scholar 

  19. A. Paolozzi, C. Paris, “A proposal to use FBG sensors for thermo-vacuum tests of space structures”, XIX AIDAA Conference, Forlı’, Italy, 2007.

  20. C. Paris, C. Vendittozzi, A. Basaglia, “Experimentation of fiber optic FBG sensors in a CFRP aerospace component”, XXII AIDAA Conference, Neaples (Italy), 2013.

  21. A. Paolozzi, I. Ciufolini, C. Paris, L. Acquaroli, P. Pier-sigilli, A. Gabrielli, “Tests on LARES Separation Systems Components Using Fiber Optic Sensors”, XX AIDAA Conference, Milano (Italy), 2009.

  22. A. Paolozzi, I. Ciufolini, I. Peroni, F. M. Onorati, L. Acquaroli, L. Scolamiero, G. Sindoni, C. Paris, C. Vendittozzi, M. Ramiconi, N. Preli, A. Lucantoni, F. Passeggio, S. Berardis, “Fibre optic sensors for the validation of the numerical simulation on the breadboard of the LARES separation system”, 59th International Astronautical Conference IAC 2008, Glasgow (Scotland), 2008.

    Google Scholar 

  23. C. Lupi, F. Felli, M. A. Caponero, A. Paolozzi, “The effectiveness of metal coating on FBG sensor sensitivity at cryogenic temperature”, Proceedings of SPIE, The International Society for Optical Engineering, Vol. 6619, pp. 161–164, 2007.

    Google Scholar 

  24. C. Lupi, F. Felli, L. Ippoliti, M. A. Caponero, F. Fabbri, A. Paolozzi, “Lead coating to improve Fibre Bragg Grating sensitivity at cryogenic temperatures”, Proceedings of SPIE, The International Society for Optical Engineering, Vol. 5855 (2), pp. 811–815, 2005.

    Google Scholar 

  25. D. Grobnic, C. W. Smelser, S. J. Mihailov and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica Fibre Bragg Gratings made with ultrafast laser radiation”, Measurement Science and Technology, Vol. 17, pp. 1009–1013, 2006.

    Article  Google Scholar 

  26. C. Zhun, “Femtosecond laser inscribed fiber Bragg grating sensors”, PhD Dissertation, The Pennsylvania State University, College of Engineering, 2007.

    Google Scholar 

  27. S. J. Mihailov, “Fiber Bragg Grating Sensors for Harsh Environments”, Sensors, Vol. 12, pp. 1898–1918, 2012.

    Article  Google Scholar 

  28. F. Finamore, C. Bruno, A. Paolozzi, D. Currie, “A spectrometric device to measure species concentrations close to the surface during re-entry”, Space Technology, Vol. 26, pp. 25–32, 2006.

    Google Scholar 

  29. A. Paolozzi, F. Felli, T. Valente, M. A. Camponero, M. Tului, “Preliminary tests for an intelligent thermal protection system for space vehicles”, Symposium on Smart Materials and MEMS. Proceedings of SPIE, The International Society for Optical Engineering, Vol. 4234, pp. 160–167, 2001.

    Google Scholar 

  30. R. R. Dils, “High-temperature optical fiber thermometer”, Journal of Applied Physics, Vol. 54, pp. 1198–1201, 1983.

    Article  Google Scholar 

  31. A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Sapphire optical fiber-based interferometer for high temperature environmental applications”, Smart Materials and Structures, Vol. 4, no. 2, pp. 147–151, June 1995.

    Article  Google Scholar 

  32. A. Wang, S. Gollapudi, K. A. Murphy, R. G. May, R. O. Claus, “Sapphire-fiber-based intrinsic Fabry-Perot interferometer”, Optics Letters, Vol. 17, No. 14, July 15, 1992.

    Google Scholar 

  33. M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications”, Measurement Science and Technology, Vol. 20, N. 11, P. 115–301, 2009.

    Article  Google Scholar 

  34. D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications”, IEEE Photonics Technology Letters, Vol. 16, pp. 2505–2507, 2004.

    Article  Google Scholar 

  35. D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres”, Measurement Science and Technology, Vol. 17, pp. 980–984, 2006.

    Article  Google Scholar 

  36. H. Xiao, J. Deng, J. Pickrell, R. G. May, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications”, Journal of Lightwave Technology, Vol. 21, Issue 10, 2003.

    Google Scholar 

  37. F. Felli, D. Pilone, A. Scicutelli, C. Lupi, L. Ippoliti, “Special optical fibres embedded in Ni superalloy devices as monitoring systems”, International Symposium on Advances and Trends in Fiber Optics and Applications ATFO2004, Chongqing University, Chongqing, China, October 11–15, 2004.

    Google Scholar 

  38. ASTM B240-13, Standard Specification for Zinc and Zinc-Aluminum (ZA): Alloys in Ingot Form for Foundry and Die Castings, ASTM International, West Conshohocken, PA, 2013.

    Google Scholar 

  39. H. Asanuma, O. Haga, K. Rimura, J. I. Ohira, H. Kurihara, A. Paolozzi, “In situ formation of strain sensors by breaking optical fibers in structural materials”, Journal of Thermoplastic Composite Materials, Vol. 19, pp. 277–292, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paris, C., Vendittozzi, C., Paolozzi, A. et al. Tests of Sapphire Optical Fiber Sensors for Strain Monitoring in High Temperature Environment. Aerotec. Missili Spaz. 95, 136–144 (2016). https://doi.org/10.1007/BF03404722

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03404722

Navigation