Skip to main content
Log in

The Molecular Basis of Increased Glomerulosclerosis after Blockade of the Renin Angiotensin System in Growth Hormone Transgenic Mice

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Angiotensin converting enzyme inhibitor (ACEi) therapy delays the onset of renal failure in diabetic nephropathy and inhibits or delays the onset of proteinuria in several animal models.

Materials and Methods

We examined this question using a transgenic model of chronic glomerulosclerosis caused by an excess production of growth hormone (GH) in which there is progressive glomerular scarring leading to uremia. In addition, since GH mice do not have systemic hypertension or an elevated glomerular filtration rate, we could address the question of whether ACEi or angiotensin II receptor antagonists (AII RA) had an effect on the development of glomerulosclerosis under these conditions. Since excess matrix accumulates in glomerulosclerosis because of alterations in the balance between its synthesis and degradation, we examined the effect of ACEi and AII RA on these parameters.

Results

Systemic blood pressure was unaffected by ACEi treatment, but the glomerular filtration rate decreased 85%. ACEi-treated mice had increased mesangial deposition of type I collagen and decreased 105 kD complex collagenase activity. In addition, ACEi-treated GH mice had increased glomerular α1 type I collagen, α1 type IV collagen, and α-smooth muscle cell actin mRNAs. No changes were noted in β actin, or 72 kD metalloproteinase mRNAs. The result of these changes was a net increase in sclerosis. Surprisingly, GH mice treated with ACEi or AngII RA developed marked renal arteriolar lesions.

Conclusions In some forms of glomerulosclerosis, the lesions develop independently of angiotensin II. Pharmacological inhibition of angiotensin II, in this circumstance, may aggravate the lesions through disregulation of the levels and the balance between glomerular matrix synthesis and degradation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 11: 1496–1497.

    Google Scholar 

  2. Yoshida Y, Fogo A, Shiraga H, Glick AD, Ichikawa I. (1988) Serial micropuncture analysis of single nephron function in subtotal renal ablation. Kidney Int. 33: 855–867.

    Article  CAS  Google Scholar 

  3. Yoshida Y, Kawamura T, Ikoma M, Fogo A, Ichikawa I. (1989) Effects of antihypertensive drugs on glomerular morphology. Kidney Int. 36: 626–635.

    Article  CAS  Google Scholar 

  4. Zatz R, Dunn R, Meyer TW, Anderson S, Rennke HG, Brenner BM. (1986) Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Invest. 77: 1925–1930.

    Article  CAS  Google Scholar 

  5. Lafayette RA, Mayer G, Park SK, Meyer TW. (1992) Angiotensin II receptor blockade limits glomerular injury in rats with reduced renal mass. J. Clin. Invest. 90: 766–771.

    Article  CAS  Google Scholar 

  6. Hall RL, Wilke WL, Fettman M. (1986) The progression of adriamycin-induced nephrotic syndrome in rats and the effect of Captopril. Toxicol. Appl Pharmacol. 82: 164–174.

    Article  CAS  Google Scholar 

  7. Marinides GN, Groggel GC, Cohen AH, Border WA. (1989) Enalapril and low protein reverse chronic puromycin aminonucleoside nephropathy. Kidney Int. 37: 749–757.

    Article  Google Scholar 

  8. Marinides GN, Groggel GC, Cohen AH, Cook T, Baranowski RL, Westenfelder C, Border WA. (1987) Failure of angiotensin converting enzyme inhibition to affect the course of chronic puromycin aminonucleoside nephropathy. Am. J. Pathol 129: 394–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Doi T, Striker LJ, Quaife C, Conti FC, Palmiter R, Behringer R, Brinster R, Striker GE. (1988) Progressive glomerulosclerosis develops in transgenic mice chronically expressing growth hormone and growth hormone releasing factor but not in those expressing insulinlike growth factor-1. Am. J. Pathol. 131: 398–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoshida H, Mitarai T, Kitamura M, Suzuki T, Ishikawa I, Fogo A, Sakai O. (1994) The effect of selective growth hormone defect in the progression of glomerulosclerosis. Am. J. Kidney Dis. 23: 302–312.

    Article  CAS  Google Scholar 

  11. Yang CW, Striker LJ, Pesce C, Chen WY, Peten EP, Elliot SJ, Doi T, Kopchick JJ, Striker GE. (1993) Glomerulosclerosis and body growth are mediated by different portions of bovine growth hormone: Studies in transgenic mice. Lab. Invest. 68: 62–70.

    CAS  PubMed  Google Scholar 

  12. Doi T, Striker LJ, Kimata K, Peten EP, Yamada Y, Striker GE. (1991) Glomerulosclerosis in mice transgenic for growth hormone. increased mesangial extracellular matrix is correlated with kidney mRNA levels. J. Exp. Med. 173: 1287–1290.

    Article  CAS  Google Scholar 

  13. Peten EP, Striker LJ, Garcia-Perez A, Striker GE. (1992) Glomerulosclerosis in growth hormone transgenic mice, upregulation of cd (IV) mRNA and appearance of α1(I) collagen mRNA: Studies by competitive PCR. Kidney Int. 43: S55–S58.

    Google Scholar 

  14. Kato H, Suzuki H, Tajima S, Ogata Y, Tominaga T, Sato A, Saruta T. (1991) Angiotensin II stimulates collagen synthesis in cultured vascular smooth muscle cells. J. Hypertens. 9: 17–22.

    Article  CAS  Google Scholar 

  15. Wolf G, Haberstroh U, Neilson EG. (1992) Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells. Am. J. Pathol. 140: 95–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ichikawa I, Maddox DA, Cogan MG, Brenner BM. (1978) Dynamics of glomerular ultrafiltration in euvolemic Munich-Wistar rats. Renal Physiol. 1: 121–131.

    Google Scholar 

  17. Fuhr J, Kaczmarczyk J, Kruttgen CD. (1955) Eine einfache colorimetrishe Methode zur Inulinbestimmung fur Nieren-clearanceuntersuchungen bei Stoffwechselgesunden und Diabetikern. Klin. Woshenschr. 33: 729–730.

    Article  CAS  Google Scholar 

  18. Smith HW, Finkelstein N, Aliminosa L, Crawford B, Graber M. (1945) The renal clearances of substituted hippuric acid derivatives and other aromatic acids in dog and man. J. Clin. Invest. 24: 388–404.

    Article  CAS  Google Scholar 

  19. Flanders KC, Roberts AB, Ling N, Fleurdelys BE, Sporn MB. (1988) Antibodies to peptide determinants in transforming growth factor beta and their applications. Biochemistry 27: 739–746.

    Article  CAS  Google Scholar 

  20. Pesce CM, Striker LJ, Peten EP, Elliot S, Striker GE. (1991) Glomerulosclerosis at both early and late stages is associated with increased cell turnover in mice transgenic for growth hormone. Lab. Invest. 65: 601–605.

    CAS  PubMed  Google Scholar 

  21. Dehoff RT, Rhines FN. (1968) Method of estimating size of discrete objects. In Quantitative Microscopy. McGraw-Hill Co., New York, pp. 75.

    Google Scholar 

  22. Peten EP, Garcia-Perez A, Terada Y, Woodrow D, Martin BM, Striker GE, Striker LJ. (1992) Age related changes in 1 and 2 type IV collagen mRNAs in adult mouse glomeruli: Quantitation by competitive PCR. Am. J. Physiol. 263: F951–F957.

    CAS  PubMed  Google Scholar 

  23. Carome MA, Striker LJ, Peten EP, Elliot SJ, Stetler-Stevenson WG, Reponen P, Tryggvason K, Striker GE. (1994) Assessment of 72 kDa gelatinase and tissue inhibitor of metalloproteinase-1 (TIMP-1) gene expression in normal and sclerotic murine glomeruli in vivo. J. Am. Soc. Nephrol., in press.

  24. Anderson S, Diamond JR, Karnowsky MJ, Brenner BM. (1988) Mechanisms underlying transition from acute glomerular injury to late glomerular sclerosis in a rat model of nephrotic syndrome. J. Clin. Invest. 82: 1757–1768.

    Article  CAS  Google Scholar 

  25. Rosenberg ME, Smith LJ, Correa-Rotter R, Hostetter TH. (1994) The paradox of the renin-angiotensin system in chronic renal disease. Kidney Int. 45: 403–410.

    Article  CAS  Google Scholar 

  26. Anderson S, Rennke HG, Brenner BM. (1986) Therapeutic advantages of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J. Clin. Invest. 77: 1993–2000.

    Article  CAS  Google Scholar 

  27. Kakinuma Y, Kawamura T, Bills T, Yoshioka T, Ichikawa I, Fogo A. (1992) Blood pressure-independent effect of angiotensin inhibition on vascular lesions of chronic renal failure. Kidney Int. 42: 46–55.

    Article  CAS  Google Scholar 

  28. Ikoma M, Kawamura T, Kakinuma Y, Fogo A, Ichikawa I. (1991) Cause of variable therapeutic efficiency of angiotensin converting enzyme inhibitor on the glomerular mesangial lesion. Kidney Int. 40: 192–202.

    Article  Google Scholar 

  29. Sorbi D, Fadly M, Hicks R, Alexander S, Arbeit L. (1993) Captopril inhibits the 72 kDa and 92 kDa matrix metalloproteinases. Kidney Int. 44: 1266–1272.

    Article  CAS  Google Scholar 

  30. Ichikawa I, Harris RC. (1991) Angiotensin actions in the kidney: Renewed insight into the old hormone. Kidney Int. 40: 583–596.

    Article  CAS  Google Scholar 

  31. Johnson RJ, Alpers CE, Yoshimura A, Lombardi D, Pritzl P, Floege J, Schwartz SM. (1992) Renal injury from angiotensin II-mediated hypertension. Hypertension 19: 464–474.

    Article  CAS  Google Scholar 

  32. Hunt MK, Ramos SP, Geary KM, Norling LL, Peach MJ, Gomez RA, Carey RM. (1992) Colocalization and release of angiotensin and renin in renal cortical cells. Am. J. Physiol. 263: F363–F373.

    CAS  PubMed  Google Scholar 

  33. Majesky MW, Lindner V, Twardzik DR, Schwartz SM. (1991) Production of transforming growth factor beta 1 during repair of arterial injury. J. Clin. Invest. 88: 904–910.

    Article  CAS  Google Scholar 

  34. Horikoshi S, McCune BK, Ray PE, Kopp JB, Sporn MB, Klotman PE. (1991) Water deprivation stimulates transforming growth factor beta 2 accumulation in the juxtaglomerular apparatus of mouse kidney. J. Clin. Invest. 88: 2117–2122.

    Article  CAS  Google Scholar 

  35. Ray PE, McCune BK, Gomez RA, Horikoshi S, Kopp JB, Klotman PE. (1993) Renal vascular induction of TGF-beta 2 and renin by potassium depletion. Kidney Int. 44: 1006–1013.

    Article  CAS  Google Scholar 

  36. Re RN. (1987) Cellular mechanisms of growth in cardiovascular tissue. Am. J. Cardiol. 60: 1041–1091.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. K. Catt for critical evaluation of this work. Dr. K. Flanders for the TGF-β antibodies, and Drs. P. Corvol and J. Gasc for the renin antibody. This study was supported by the Juvenile Diabetes Foundation International (E.P.P., Career Development Award), by the American Diabetic Association (L.J.S., Mentor-based Post-doctoral Fellowship Award), and by the National Institutes of Health (DIR, NIDDK, and Research Grants DK 42131 to A.F., DK 44757 to A.F. and I.I., and DK 37868 to I.I.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peten, E.P., Striker, L.J., Fogo, A. et al. The Molecular Basis of Increased Glomerulosclerosis after Blockade of the Renin Angiotensin System in Growth Hormone Transgenic Mice. Mol Med 1, 104–115 (1994). https://doi.org/10.1007/BF03403536

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03403536

Navigation