Skip to main content
Log in

Review of electrical separation methods

Part 1: Fundamental aspects

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

The fundamentals of electrical separation, the electrical properties of minerals, the principal methods used for charging minerals and their mechanisms, the effective factors controlling the acquisition of charges by minerals, the general configuration of commercial electric separators and the forces operating during electrical separation of minerals are reviewed and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfano, G., Ciccu, R., Ghiani, M., Peretti, R., and Zucca, A., 1991, “Electrical beneficiation of kainite ores,” Proceedings of XVII IMPC, Deresden, Polygraphischer Bereich/Bergakademie Freiberg/Sa., Vol. 6, pp. 17–27.

    Google Scholar 

  • Bailey, A.G., 1984, “Electrostatic phenomena during powder handling,” Powder Technology, Vol. 37, pp. 71–85.

    Article  Google Scholar 

  • Barthelemy, R.E., and Mora, R.G., 1960 “Electrical high tension minerals beneficiation: principles and technical aspects,” Proceedings of V IMPC, London, IMM, pp. 757–773.

    Google Scholar 

  • Brown, D.K., 1997, “Electrostatic pyrite ash and toxic mineral separator,” US Patent No. 5,637,122, Jun. 10, 1997, 5 pp.

    Google Scholar 

  • Carpco Inc., 1995, “V-Stat Electrostatic Separator,” Bulletin No. 95708.

    Google Scholar 

  • Carpco Inc., 1998, “V-Stat Triboelectrostatic Separation,” Bulletin No. 9874.

    Google Scholar 

  • Carta, M., Ciccu, R., Del Fa, C., Ferrara, G., Ghiani, M., and Massacci, P., 1970 “The influence of the surface energy structure of minerals on electric separation and flotation,” Proceedings of IX IMPC, Prague, USTAV PRO VYZKUM RUD, Vol. 4, pp. 47–58.

    Google Scholar 

  • Carta, M., Ciccu, R., Del Fa, C., Ferrara, G., Ghiani, M., and Massacci, P., 1973, “Improvement in electric separation and flotation by modification of energy levels in surface layers,” Proceedings of X IMPC, London, IMM, pp. 237–248.

    Google Scholar 

  • Ciccu, R., Ghiani, M., and Ferrara, G., 1993, “Selective tribocharging of particles for separation,” KONA, No. 11, pp. 5–15.

    Google Scholar 

  • Cross, J.A., 1987, Electrostatics: Principles, Problems and Applications, Adam Hilger, Bristol, England, pp. 17–90 and 248–273.

    Google Scholar 

  • Dance, A.D., and Morrison, R.D., 1992, “Quantifying a black art: The electrostatic separation of mineral sands,” Minerals Engineering, Vol. 5, No. 7, pp. 751–765.

    Article  Google Scholar 

  • Dance, A.D., Kojovic, T., and Morrison, R.D., 1991, “Development of electrostatic separation models for the mineral sands industry,” Proceeding of 5th Extractive Metallurgy Conference, Perth, 2–4 October 1991, Australian IMM publication series, No. 7/91, pp. 13–18.

    Google Scholar 

  • Dascalescu, L., Iuga, A., Morar, R., Neamtu, V., Suarasan, I., Samuila, A., and Rafiroiu, D., 1993, “Corona and electrostatic electrode for high tension separators,” J. Electrostatics, Vol. 29, pp. 211–215.

    Article  Google Scholar 

  • Fraas, F., 1962, “Electrostatic Separation of Granular Materials,” US Bureau of Mines, Bulletin 603, 155 pp.

    Google Scholar 

  • Fricke, G., 1977, “The use of electrostatic separation processes in the beneficiation of crude potassium salts,” Phosphorus & Potassium, Vol. 90, pp. 42–45.

    Google Scholar 

  • Gallo, C.F., and Lama, W.L., 1976, “Classical electrostatic description of the work function and ionization energy of insulators,” IEEE Transaction on Industry Applications, Vol. IA-12, No. 1, pp. 7–12.

    Article  Google Scholar 

  • Gaudin, A.M., 1971, “The Principal of electrical processing with particular application to electrostatic separation,” Minerals Sci. Engng, Vol. 13, pp. 46–57.

    Google Scholar 

  • Haga, K., 1995, “Applications of the electrostatic separation technique,” Handbook of Electrostatic Processes, J.S. Chang, A.J. Kelly, and J.M. Crowly, eds., Marcel Dekker, Inc., New York, pp. 365–386.

    Google Scholar 

  • Harper, W.R., 1967, Contact and Frictional Electrification, Oxford University Press, London, 369 pp.

    Google Scholar 

  • Hendricks, C.D., 1973 “Charging macroscopic particles,” Electrostatics and its applications, A.D. Moore, ed., Wiley Interscience, New York, pp. 57–85.

    Google Scholar 

  • Hucko, R.E., Gala, H.B., and Jacobsen, P.S., 1988, “Status of DOE-sponsored advanced coal cleaning processes,” Industrial Practice of Fine Coal Processing, R.R. Klimpel and P.T. Lukie, eds., SME, pp. 159–210.

    Google Scholar 

  • Inculet, I.I., 1984, Electrostasic Mineral Separation, Research Study Press Ltd., England, 153 pp.

    Google Scholar 

  • Inculet, I.I., Bergougnou, M.A., and Brown, J.D. 1982, “Electrostatic beneficiation of coal,” Physical Cleaning of Coal, Y.A. Liu, ed., Marcel Dekker INC, New York, pp. 87–131.

    Google Scholar 

  • Johnson, H.B., 1938, “Electrostatic separation-II, the industrial application of the Huff process,” Engineering and Mining Journal, Vol. 139, No. 10. pp. 42–43 and 52.

    Google Scholar 

  • Kelly, E. G., and Spottiswood, D. J., 1989a “The theory of electrostatic separation: A review, Part II. Particle charging,” Minerals Engineering, Vol. 2, No. 2, pp. 193–205.

    Article  Google Scholar 

  • Kelly, E. G., and Spottiswood, D. J., 1989b, “The theory of electrostatic separation: A review: Part I, fundamentals,” Minerals Engineering, Vol. 2, No. 1, pp. 33–46.

    Article  Google Scholar 

  • Kelly, E.G., and Spottiswood, D. J., 1989c, “The theory of electrostatic separation: A review, Part III, the separation of particles,” Minerals Engineering, Vol. 2, No. 3, pp. 337–349.

    Article  Google Scholar 

  • Knoll, F.S. and Taylor, J.B., 1985, “Advances in electostatic separation” Minerals and Metallurgical Processing, May, Vol. 2, No. 2, pp. 106–114.

    Google Scholar 

  • Knoll, F.S., and Taylor, J.B., 1986, “Selection and sizing of electrostatic concentrating equipment,” Design and Installation of Concentration and Dewatering Circuits, A.L. Mular and M.A. Anderson, eds., SME, pp. 208–225.

    Google Scholar 

  • Lama, W.L., and Gallo, C.F., 1976, “The sparking characteristics of needle-to-plane coronas,” IEEE Transaction on Industry Applications, Vol. IA-12, pp. 288–2931.

    Article  Google Scholar 

  • Lawver, J.E., 1960, “Fundamentals of electrical concentration of minerals” Mines Magazine, January, pp. 20–33.

    Google Scholar 

  • Lawver, J.E., 1985, “Electrostatic and magnetic separation, Part A: electrostatic separation,” Mineral Processing Handbook, N.L. Weiss, ed., SME: pp. 6–1–6–10.

    Google Scholar 

  • Lawver, J.E., and Dyrenforth, W.P., 1973, “Electrostatic separation” Electrostatic and Its Applications, A.D. Moore ed., Wiley Interscience, New York, pp. 221–249.

    Google Scholar 

  • Lawver, J.E., Taylor, J.B., and Knoll, F.S., 1986, “Laboratory testing for electrostatic concentration circuit design,” Design and Installation of Concentration and Dewatering Circuits, A.L. Mular and M.A. Anderson, eds., SME, pp. 454–477.

    Google Scholar 

  • Lindley, K.S., and Rowson, N.A., 1997, “Charging mechanisms for particles prior to electrostatic separation,” Magnetic and Electrical Separation, Vol. 8, pp. 101–113.

    Article  Google Scholar 

  • Lockhart, N.C., 1984, “Dry coal beneficiation,” Powder Technology, Vol. 40, pp. 1742.

    Google Scholar 

  • Masuda, S., Toraguchi, M., Takahashi, T., and Haga, K., 1983, “Electrostatic beneficiation of coal using a cyclone-tribocharger,” IEEE Transactions on Industry Applications, Vol. IA-19, No. 5, pp. 789–793.

    Article  Google Scholar 

  • McKelvey, J.P., 1993, “Semiconductor materials,” Solid State Physics, Krieger Publishing Company, Malabar, FL, pp. 372–402.

    Google Scholar 

  • Mehta, R.K., Chatterjee, I., and Misra, M., 1996 “Simultaneous grinding and triboelectification of coal following by separation in an electrocentrifugal field,” SME Annual Meeting, Phoenix, Arizona, March 11–14, Preprint 96-155, 12 pp.

    Google Scholar 

  • Mehta, R.K., Misra, M., and Nelson, M., 1994, “Triboelectrification assisted, air classification process for removal of radionuclides from contaminated soils,” Presented at 9th Annual Conference on Contaminated Soils, October 17–20, 1994, University of Massachusetts, Amberst, MA, 12 pp.

    Google Scholar 

  • Mora, R.G., 1958, “Study of Electrical Concentration of Minerals,” Thesis, Massachusetts Institute of Technology, MA.

    Google Scholar 

  • Olofinsky, N.F., Novikova, V.A., and Belov, V.I., 1973, “Application of electrical methods of separation to close sizing of finely dispersed mineral particles,” Proceedings of X IMPC, London, IMM, pp. 929–948.

    Google Scholar 

  • Pearse, M.J., and Pope, M.I., 1976, “The separation of quartz-dolomite powder using a triboelectric technique” Powder Technology, Vol. 14, pp. 7–15.

    Article  Google Scholar 

  • Plaskin, I.N., and Olofinsky, N.F., 1966, “Review of electrical separation methods in mineral processing,” Trans. IMM, Vol. 75, No. 2, pp. C57–64.

    Google Scholar 

  • Ralston, O.C., 1961, Electrostatic Separation of Mixed Granular Solids, Elsevier, Netherlands, 261 pp.

    Google Scholar 

  • Rose, R.M., Shepard, L.A., and Wulff, J., The Structure and Properties of Materials: Vol. IV, Electronic Properties, Wiley, New York.

  • Shuey, R.T., 1975, Semi Conducting Ore Minerals, Elsevier Publisher, Netherlands, 415 pp.

    Google Scholar 

  • Taggart, A.F., 1954, “Electrostatic separation,” Handbook of Mineral Dressing, John Wiley & Sons, New York, pp. 13–40–13–47.

    Google Scholar 

  • Tarjan, G., 1986 “Electrical separation,” Mineral Processing 2, Akademiai Kiado, Budapest, pp. 379–411.

    Google Scholar 

  • Visser, J., 1989, “Van der Waals and other cohesive forces affecting powder fluidization,” Powder Technology, Vol. 58, pp. 1–10.

    Article  Google Scholar 

  • Whitlock, D.R., 1995, “Separation of mixed fine powders using new electrostatic technology,” Proceedings of Industrial Minerals International Congress, Amsterdam, pp. 140–143.

    Google Scholar 

  • Whitlock, D.R., Vasiliauskas, A., Bittner, J., and Tondu, E., 1995, “Dry electrostatic separation of fine powder - A revolutionary approach to processing minerals,” Presented at Industrial Minerals International Congress, Amsterdam, Preprint, 9 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manouchehri, H.R., Hanumantha Rao, K. & Forssberg, K.S.E. Review of electrical separation methods. Mining, Metallurgy & Exploration 17, 23–36 (2000). https://doi.org/10.1007/BF03402825

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402825

Key words

Navigation