Skip to main content
Log in

Schizophrenia: Neural Mechanisms for Novel Therapies

  • In Overview
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Although valuable antischizophrenic drugs exist, they only partially ameliorate symptoms and elicit substantial side effects. Classic neuroleptic drugs act by blocking dopamine receptors. They can relieve some symptoms but not behavioral withdrawal features that are designated “negative” symptoms. Clozapine and related newer atypical neuroleptics may be more efficacious in relieving negative symptoms. Understandng their actions may facilitate new drug discovery. Agents influencing glutamate neurotransmission and N-methyl-d-aspartate receptors, especially the cotransmitter d-serine, are promising. Stimulation of the α7 subtype of nicotinic acetylcholine receptor may also be efficacious. The search for genes linked to schizophrenia has revealed several leads that may permit development of novel therapeutic agents. Promising genes include disrupted-in-schizophrenia-1, dysbindin, and neuregulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Sawa A, Snyder SH. (2002) Schizophrenia: diverse approaches to a complex disease. Science 296:692–5.

    Article  CAS  PubMed  Google Scholar 

  2. Harrison PJ. (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:593–624.

    Article  PubMed  Google Scholar 

  3. Weinberger DR, Torrey EF, Neophytides AN, Wyatt RJ. (1979) Lateral cerebral ventricular enlargement in chronic schizophrenia. Arch. Gen. Psychiatry 36: 735–9.

    Article  CAS  PubMed  Google Scholar 

  4. Weinberger DR. (1996) On the plausibility of “the neurodevelopmental hypothesis” of schizophrenia. Neuropsychopharmacology 14:1S–11S.

    Article  CAS  PubMed  Google Scholar 

  5. Berrettini WH. (2000) Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol. Psychiatry 48:531–8.

    Article  CAS  PubMed  Google Scholar 

  6. Carlsson A. (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179–86.

    Article  CAS  PubMed  Google Scholar 

  7. Creese I, Burt DR, Snyder SH. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–3.

    Article  CAS  PubMed  Google Scholar 

  8. Seeman P, Lee T, Chau-Wong M, Wong K. (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–9.

    Article  CAS  PubMed  Google Scholar 

  9. Meltzer HY. (2002) Mechanism of action of atypical antipsychotic drugs. In: Neuropsychopharmacology: the fifth generation of progress. Davis KL, Charney D, Coyle JT, Nemeroff C. (eds.) Raven Press, New York, pp. 819–31.

    Google Scholar 

  10. Kapur S, Remington G. (2001) Atypical antipsychotics: new directions and new challenges in the treatment of schizophrenia. Annu. Rev. Med. 52:503–17.

    Article  CAS  PubMed  Google Scholar 

  11. Thaker GK, Carpenter Jr WT. (2001) Advance in schizophrenia. Nat. Med. 7:667–71.

    Article  CAS  PubMed  Google Scholar 

  12. Javitt DC, Zukin SR. (1991) Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 148:1301–8.

    Article  CAS  PubMed  Google Scholar 

  13. Krystal JH et al. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51:199–214.

    Article  CAS  PubMed  Google Scholar 

  14. Baranano DE, Ferris CD, Snyder SH. (2001) Atypical neural messengers. Trends. Neurosci. 24:99–106.

    Article  CAS  PubMed  Google Scholar 

  15. Goff DC, Coyle JT. (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am. J. Psychiatry 158:1367–77.

    Article  CAS  PubMed  Google Scholar 

  16. Moghaddam B, Adams BW. (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–52.

    Article  CAS  PubMed  Google Scholar 

  17. Akbarian S et al. (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch. Gen. Psychiatry 52:258–66.

    Article  CAS  PubMed  Google Scholar 

  18. Guidotti A et al. (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatry 57:1061–69.

    Article  CAS  PubMed  Google Scholar 

  19. Schoepp DD, Marek JG. (2002) Preclinical pharmacology of mGlu2/3 receptor agonists: novel agents for schizophrenia? Curr. Drug Targets CNS Neurologic. Disorders 1:215–25.

    Article  CAS  Google Scholar 

  20. Lyon ER. (1999) A review of the effects of nicotine on schizophrenia and antipsychotic medications. Psychiatr. Serv. 50:1346–50.

    Article  CAS  PubMed  Google Scholar 

  21. Simosky JK, Stevens KE, and Freedman R. (2002) Nicotinic agonists and psychosis. Curr. Drug Targets CNS Neurologic. Disorders 1:149–62.

    Article  CAS  Google Scholar 

  22. Light GA, Braff DL. (1998) The “incredible shrinking” P50 event-related potential. Biol. Psychiatry 43:918–20.

    Article  CAS  PubMed  Google Scholar 

  23. Leonard S et al. (2002) Association of promoter variants in the α7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch. Gen. Psychiatry 59:1085–96.

    Article  CAS  PubMed  Google Scholar 

  24. Bassett AS, Chow EW. (1999) 22q11 deletion syndrome: a genetic subtype of schizophrenia. Biol. Psychiatry 46:882–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murphy KC, Jones LA, Owen MJ. (1999) High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch. Gen. Psychiatry 56:940–5.

    Article  CAS  PubMed  Google Scholar 

  26. Murphy KC. (2002) Schizophrenia and velo-cardio-facial syndrome. Lancet 359:426–30.

    Article  PubMed  Google Scholar 

  27. Egan MF et al. (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 98:6917–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gogos JA et al. (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc. Natl. Acad. Sci. U.S.A. 95:9991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jacquet H et al. (2002) PRODH mutations and hyperprolinemia in a subset of schizophrenic patients. Hum. Mol. Genet. 11:2243–49.

    Article  CAS  PubMed  Google Scholar 

  30. Liu H et al. (2002) Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 99:3717–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gogos JA et al. (1999) The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat. Genet. 21:434–9.

    Article  CAS  PubMed  Google Scholar 

  32. Renick SE et al. (1999) The mammalian brain high-affinity l-proline transporter is enriched preferentially in synaptic vesicles in a subpopulation of excitatory nerve terminals in rat forebrain. J. Neurosci. 19:21–33.

    Article  CAS  PubMed  Google Scholar 

  33. Chumakov I et al. (2002) Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 99:13675–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Millar JK et al. (2000) Disruption of two novel genes by a translocation cosegregating with schizophrenia. Hum. Mol. Genet. 9:1415–23.

    Article  CAS  PubMed  Google Scholar 

  35. Blackwood DH et al. (2001) Schizophrenia and affective disorders-cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am. J. Hum. Genet. 69:428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Price DL, Sisodia SS. (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Annu. Rev. Neurosci. 21:479–505.

    Article  CAS  PubMed  Google Scholar 

  37. Ozeki Y et al. (2003) Disrupted-In-Schizophrenia-1 (DISC-1): Mutant truncation prevents binding to NUDEL and inhabits neurite outgrowth. Proc. Natl. Acad. Sci. U.S.A. 100:289–94.

    Article  CAS  PubMed  Google Scholar 

  38. Straub RE et al. (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am. J. Hum. Genet. 71:337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stefansson H et al. (2002) Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet. 71:877–92.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P. (2000) Molecular characterization 9 of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28:53–67.

    Article  CAS  PubMed  Google Scholar 

  41. Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. (2001) Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol. Psychiatry 6:293–301.

    Article  CAS  PubMed  Google Scholar 

  42. Chowdari KV et al. (2002) Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum. Mol. Genet. 11:1373–80.

    Article  CAS  PubMed  Google Scholar 

  43. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS. (2000) Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science 288:678–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ford JM. (1999) Schizophrenia: the broken P300 and beyond. Psychophysiology 36:667–82.

    Article  CAS  PubMed  Google Scholar 

  45. Moldin SO. (1994) Indicators of liability to schizophrenia: perspectives from genetic epidemiology. Schizophr. Bull. 20:169–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms D Dodson for typing the manuscript and Ms Y Lema for arranging the figure. This work is supported by USPHS Grants DA-00266, MH-18501, and Research Scientist Award DA-00074 (SHS), and grants from the Stanley Medical Research Institute, NARSAD, and S-R foundation (Washington DC, USA) (AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon H. Snyder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawa, A., Snyder, S.H. Schizophrenia: Neural Mechanisms for Novel Therapies. Mol Med 9, 3–9 (2003). https://doi.org/10.1007/BF03402101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402101

Keywords

Navigation