Skip to main content

Advertisement

Log in

Lack of Plasma Membrane Targeting of a G172D Mutant Thiamine Transporter Derived from Rogers Syndrome Family

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Rogers syndrome, also known as thiamine responsive megaloblastic anemia (TRMA), is an autosomal recessive disorder resulting in megaloblastic anemia, diabetes mellitus and sensorineural deafness. The gene associated with Rogers syndrome encodes for a plasma membrane thiamine transporter, THTR-1, a member of the solute carrier family that includes its homologue THTR-2 and the reduced folate carrier.

Materials and Methods

Using transient expression of wild-type and a missense mutant THTR-1 protein, derived from a TRMA family, in different cell lines and immunodetection analysis, we determined the expression, post-translational modification, and subcellular localization of the wild-type and G172D mutant THTR-1. The transport activity of the transfected THTR-1 proteins was measured using a [3H] thiamine uptake assay.

Results

The mutant THTR-1 protein was undetectable in transfected cells grown at 37°C but was readily expressed in transfected cells cultured at 28°C, thereby allowing for further biochemical and functional analysis. In contrast to its fully glycosylated wild-type mature protein, the mutant THTR-1 protein underwent only the initial stage of N-linked glycosylation. The failure to undergo a complete glycosylation resulted in the lack of plasma membrane targeting and confinement of the mutant THTR-1 to the Golgi and endoplasmic reticulum (ER) compartment. Consistently, either treatment with tunicamycin or substitution of the THTR-1 consensus N-glycosylation acceptor asparagine 63 with glutamine, abolished its glycosylation and plasma membrane targeting.

Conclusions

Taken collectively, these results suggest that the G172D mutation presumably misfolded THTR-1 protein that fails to undergo a complete glycosylation, is retained in the Golgi-ER compartment and thereby cannot be targeted to the plasma membrane. Finally, transfection studies revealed that the mutant G172D THTR-1 failed to transport thiamine. This is the first molecular and functional characterization of a missense mutant THTR-1 derived from a family with Rogers syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rindi G, Laforenza U. (2000) Thiamine intestinal transport and related issues: recent aspects. Proc. Soc. Exp. Biol. Med. 224: 246–255.

    Article  CAS  PubMed  Google Scholar 

  2. Labay V, Raz T, Baron D, et al. (1999) Mutations in SLC19A2 cause thiamine-responsive megaloblastic anemia associated with diabetes mellitus and deafness. Nat. Genet. 22: 300–304.

    Article  CAS  PubMed  Google Scholar 

  3. Fleming JC, Tartaglini E, Steinkamp MP, Schorderet DF, Cohen N, Neufeld EJ. (1999) The gene mutated in thiamine-responsive anemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat. Genet. 22: 305–308.

    Article  CAS  PubMed  Google Scholar 

  4. Diaz GA, Banikazemi M, Oishi K, Desnick RJ, Gelb DB. (1999) Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anemia syndrome. Nat. Genet. 22: 309–312.

    Article  CAS  PubMed  Google Scholar 

  5. Dutta B, Huang W, Molero M, et al. (1999) Cloning of the human thiamine transporter, a member of the folate transporter family. J. Biol. Chem. 274: 31925–31929.

    Article  CAS  PubMed  Google Scholar 

  6. Rajgopal A, Edmondnson A, Goldman ID, Zhao R. (2001) SLC19A3 encodes a second thiamine transporter ThTr2. Biochim. Biophys. Acta 1537: 175–178.

    Article  CAS  PubMed  Google Scholar 

  7. Casirola D, Patrini C, Ferrari G, Rindi G. (1990) Thiamin transport by human erythrocytes and ghosts. J. Membr. Biol. 118: 11–18.

    Article  CAS  PubMed  Google Scholar 

  8. Rogers LE, Porter FS, Sidbury Jr. JB. (1969) Thiamine-responsive megaloblastic anemia. J. Pediatr. 74: 494–504.

    Article  PubMed  Google Scholar 

  9. Mandel H, Berant M, Hazani A, Naveh Y. (1984) Thiamine-dependent beriberi in the “thiamine-responsive anemia syndrome.” N. Engl. J. Med. 311: 836–838.

    Article  CAS  PubMed  Google Scholar 

  10. Rindi G, Patrini C, Laforenza U, et al. (1994) Further studies on erythrocyte thiamin transport and phosphorylation in seven patients with thiamin-responsive megaloblastic anemia. J. Inherit. Metab. Dis. 17: 667–677.

    Article  CAS  PubMed  Google Scholar 

  11. Abboud MR, Alexander D, Najjar SS. (1985) Diabetes mellitus, thiamine-dependent megaloblastic anemia, and sensorineural deafness associated with deficient alpha-ketoglutarate dehydrogenase activity. J. Pediatr. 107: 537–541.

    Article  CAS  PubMed  Google Scholar 

  12. Eudy JD, Spiegelstein O, Barber RC, Wlodarczyk BJ, Talbot J, Finnell RH. (2000) Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes. Mol. Genet. Metab. 71: 581–590.

    Article  CAS  PubMed  Google Scholar 

  13. Dixon KH, Lanpher BC, Chiu J, Kelley K, Cowan KH. (1994) A novel cDNA restores reduced folate carrier activity and methotrexate sensitivity to transport deficient cells. J. Biol. Chem. 269: 17–20.

    PubMed  CAS  Google Scholar 

  14. Prasad PD, Ramamoorthy S, Leibach FH, Ganapathy V. (1995) Molecular cloning of the human placental folate transporter. Biochem. Biophys. Res. Commun. 206: 681–687.

    Article  CAS  PubMed  Google Scholar 

  15. Wong SC, Proefke SA, Bhushan A, Matherly LH. (1995) Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. J. Biol. Chem. 270: 17468–17475.

    Article  CAS  PubMed  Google Scholar 

  16. Jansen G, Pieters R. (1998) The role of impaired transport in (pre)clinical resistance to methotrexate-insights on new antifolates. Drug Resistance Updates 1: 211–218.

    Article  CAS  PubMed  Google Scholar 

  17. Lo PK, Chen JY, Tang PP, et al. (2001) Identification of a mouse thiamine transporter gene as a direct transcriptional target for p53. J. Biol. Chem. 276: 37186–37193.

    Article  CAS  PubMed  Google Scholar 

  18. Raz T, Labay V, Baron D, et al. (2000) The spectrum of mutations, including four novel ones, in the thiamine-responsive megaloblastic anemia gene SLC19A2 of eight families. Hum. Mutat. 16: 37–42.

    Article  CAS  PubMed  Google Scholar 

  19. Stagg AR, Fleming JC, Baker MA, Sakamoto M, Cohen N, Neufeld EJ. (1999) Defective high-affinity thiamine transporter leads to cell death in thiamine-responsive megaloblastic anemia syndrome fibroblasts. J. Clin. Invest. 103: 723–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Naviaux RK, Costanzi E, Haas M, Verma IM. (1996) The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70: 5701–5705.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Hibi M, Lin A, Smeal T, Minden A, Karin M. (1993) Identification of an oncoprotein and UV responsive kinase that binds and potentiates the activity of the c-jun activation domain. Genes Dev. 7: 2135–2148.

    Article  CAS  PubMed  Google Scholar 

  22. Wong SC, Zhang L, Proefke SA, Matherly LH. (1998) Effects of the loss of capacity for N-glycosylation on the transport activity and cellular localization of the human reduced folate carrier. Biochim. Biophys. Acta 1375: 6–12.

    Article  CAS  PubMed  Google Scholar 

  23. Sharif KA, Goldman ID. (2000) Rapid determination of membrane transport parameters in adherent cells. Biotechniques 28: 926–928, 930, 932.

    Article  CAS  PubMed  Google Scholar 

  24. Gahmberg CG, Tolvanen M. (1996) Why mammalian cell surface proteins are glycoproteins. Trends Biochem. Sci. 21: 308–311.

    Article  CAS  PubMed  Google Scholar 

  25. Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ. (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358: 761–764.

    Article  CAS  PubMed  Google Scholar 

  26. Featherstone C. (1998) Coming to grips with the Golgi. Science 282: 2172–2174.

    Article  CAS  PubMed  Google Scholar 

  27. Fleming JC, Steinkamp MP, Kawatsuji R, et al. (2001) Characterization of a murine high-affinity thiamine transporter, Slc19a2. Mol. Genet. Metab. 74: 273–280.

    Article  CAS  PubMed  Google Scholar 

  28. Valerio G, Franzese A, Poggi V, Tenore A. (1998) Long-term follow-up of diabetes in two patients with thiamine-responsive megaloblastic anemia syndrome. Diabetes Care 21: 38–41.

    Article  CAS  PubMed  Google Scholar 

  29. Klausner RD, Sitia R. (1990) Protein degradation in the endoplasmic reticulum. Cell 62: 611–614.

    Article  CAS  PubMed  Google Scholar 

  30. Verma R, Deshaies RJ. (2000) A proteasome howdunit: the case of the missing signal. Cell 101: 341–344.

    Article  CAS  PubMed  Google Scholar 

  31. Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR. (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83: 129–135.

    Article  CAS  PubMed  Google Scholar 

  32. Loo TW, Clarke DM. (1994) Prolonged association of temperature-sensitive mutants of human P-glycoprotein with calnexin during biogenesis. J. Biol. Chem. 269: 28683–28689.

    PubMed  CAS  Google Scholar 

  33. Pind S, Riordan JR, Williams DB. (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269: 12784–12788.

    PubMed  CAS  Google Scholar 

  34. Drori S, Jansen G, Mauritz R, Peters GJ, Assaraf YG. (2000) Clustering of mutations in the first transmembrane domain of the human reduced folate carrier in GW1843U89-resistant leukemia cells with impaired antifolate transport and augmented folate uptake. J. Biol. Chem. 275: 30855–30863.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao R, Sharina IG, Goldman ID. (1999) Pattern of mutations that results in loss of reduced folate carrier function under antifolate selective pressure augmented by chemical mutagenesis. Mol. Pharmacol. 56: 68–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Drs Y. C. Broder and O. Shenkar for technical assistance with cell staining and confocal microscopy, respectively; Ms. A. Cohen for technical assistance; Dr G. Spira for the use of laboratory equipment; Drs V. Labay and D. Kornizer for fruitful suggestions; and Dr L. H. Matherly for the human RFC-HA expression plasmid.

This work was partially supported by the Israeli Academy of Sciences and Juvenile Diabetes International Foundation to N. C. and by Technion internal grants to A. A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ami Aronheim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baron, D., Assaraf, Y.G., Cohen, N. et al. Lack of Plasma Membrane Targeting of a G172D Mutant Thiamine Transporter Derived from Rogers Syndrome Family. Mol Med 8, 462–474 (2002). https://doi.org/10.1007/BF03402026

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402026

Keywords

Navigation