Skip to main content
Log in

The Chediak-Higashi Protein Interacts with SNARE Complex and Signal Transduction Proteins

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Chediak-Higashi syndrome (CHS) is an inherited immunodeficiency disease characterized by giant lysosomes and impaired leukocyte degranulation. CHS results from mutations in the lysosomal trafficking regulator (LYST) gene, which encodes a 425-kD cytoplasmic protein of unknown function. The goal of this study was to identify proteins that interact with LYST as a first step in understanding how LYST modulates lysosomal exocytosis.

Materials and Methods

Fourteen cDNA fragments, covering the entire coding domain of LYST, were used as baits to screen five human cDNA libraries by a yeast two-hybrid method, modified to allow screening in the activation and the binding domain, three selectable markers, and more stringent confirmation procedures. Five of the interactions were confirmed by an in vitro binding assay.

Results

Twenty-one proteins that interact with LYST were identified in yeast two-hybrid screens. Four interactions, confirmed directly, were with proteins important in vesicular transport and signal transduction (the SNARE-complex protein HRS, 14-3-3, and casein kinase II).

Conclusions

On the basis of protein interactions, LYST appears to function as an adapter protein that may juxtapose proteins that mediate intracellular membrane fusion reactions. The pathologic manifestations observed in CHS patients and in mice with the homologous mutation beige suggest that understanding the role of LYST may be relevant to the treatment of not only CHS but also of diseases such as asthma, urticaria, and lupus, as well as to the molecular dissection of the CHS-associated cancer predisposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Targan SR, Oseas R. (1983) The “lazy” NK cells of Chediak-Higashi syndrome. J. Immunol. 130: 2671–2674.

    PubMed  CAS  Google Scholar 

  2. Burkhardt JK, Wiebel FA, Hester S, Argon Y. (1993) The giant organelles in beige and Chediak-Higashi fibroblasts are derived from late endosomes and mature lysosomes. J. Exp. Med. 178: 1845–1856.

    Article  CAS  PubMed  Google Scholar 

  3. Faigle W, Raposo G, Tenza D, et al. (1998) Deficient peptide loading and MHC class II endosomal sorting in a human genetic immunodeficiency disease: the Chediak-Higashi Syndrome. J. Cell. Biol. 141: 1121–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blume RS, Bennett JM, Yankee RA, Wolff SM. (1968) Defective granulocyte regulation in the Chediak-Higashi syndrome. N. Engl. J. Med. 279: 1009–1015.

    Article  CAS  PubMed  Google Scholar 

  5. Roder JC, Haliotis T, Klein M, et al. (1980) A new immunodeficiency disorder in humans involving NK cells. Nature 284: 553–555.

    Article  CAS  PubMed  Google Scholar 

  6. Baetz K, Isaaz S, Griffiths GM. (1995) Loss of cytotoxic T lymphocyte function in Chediak-Higashi syndrome arises from a secretory defect that prevents lytic granule exocytosis. J. Immunol. 154: 6122–6131.

    PubMed  CAS  Google Scholar 

  7. Windhorst DB, Zelickson AS, Good RA. (1966) Chediak-Higashi syndrome: hereditary gigantism of cytoplasmic organelles. Science 151: 81–83.

    Article  CAS  PubMed  Google Scholar 

  8. Rendu F, Breton-Gorius J, Lebret M, et al. (1983) Evidence that abnormal platelet functions in human Chediak-Higashi syndrome are the result of a lack of dense bodies. Am. J. Pathol. 111: 307–314.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Barbosa MDFS, Nguyen QA, Tchernev VT, et al. (1996) Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature 382: 262–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagle DL, Karim MA, Woolf EA, et al. (1996) Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome. Nat. Genet. 14: 307–311.

    Article  CAS  PubMed  Google Scholar 

  11. Barbosa MDFS, Barrat FJ, Tchernev VT, et al. (1997) Identification of mutations in two major mRNA isoforms of the Chediak-Higashi syndrome gene in human and mouse. Hum. Mol. Genet. 6: 1091–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perou CM, Leslie JD, Green W, Li L, Ward DM, Kaplan J. (1997) The Beige/Chediak-Higashi syndrome gene encodes a widely expressed cytosolic protein. J. Biol. Chem. 272: 29790–29794.

    Article  CAS  PubMed  Google Scholar 

  13. Uetz P, Giot L, Cagney G, et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403: 623–627.

    PubMed  CAS  Google Scholar 

  14. Uyama E, Hirano T, Ito K, et al. (1994) Adult Chediak-Higashi syndrome presenting as parkinsonism and dementia. Acta Neurol. Scand. 89: 175–183.

    Article  CAS  PubMed  Google Scholar 

  15. Kondo N, Shimozawa N, Asano J, Imamura A, Orii T. (1994) Chediak-Higashi syndrome with cerebellar cortical atrophy detected by MRI. Clin. Genet. 46: 439–440.

    Article  CAS  PubMed  Google Scholar 

  16. Hargis AM, Prieur DJ. (1987) Animal model: renal lesions in cats with Chediak-Higashi-Steinbrinck syndrome. Am. J. Med. Genet. 26: 169–179.

    Article  CAS  PubMed  Google Scholar 

  17. Eguchi M, Poon KC, Spicer SS. (1982) Alterations in the proximal nephron of beige mice with the Chediak-Higashi syndrome. Am. J. Pathol. 106: 95–109.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Deprez P, Laurent R, Griscelli C, Buriot D, Agache P. (1978) Chediak-Higashi disease (report on a new case). Ann. Dermatol. Venereol. 105: 841–849.

    PubMed  CAS  Google Scholar 

  19. Hargis AM, Prieur DJ. (1985) Animal model. Light and electron microscopy of hepatocytes of cats with Chediak-Higashi syndrome. Am. J. Med. Genet. 22: 659–668.

    Article  CAS  PubMed  Google Scholar 

  20. Ozaki K, Maeda H, Nishikawa T, Nishimura M, Narama I. (1994) Chediak-Higashi syndrome in rats: light and electron microscopical characterization of abnormal granules in beige rats. J. Comp. Pathol. 110: 369–379.

    Article  CAS  PubMed  Google Scholar 

  21. Asao H, Sasaki Y, Arita T, et al. (1997) HRS is associated with STAM, a signal transducing adaptor molecule. J. Biol. Chem. 272: 32785–32791.

    Article  CAS  PubMed  Google Scholar 

  22. Komada M, Masaki R, Yamamoto A, Kitamura N. (1997) HRS, a tyrosine kinase substrate with conserved double zinc finger domain, is localized to the cyto-plasmic surface of early endosomes. J. Biol. Chem. 272: 20538–20544.

    Article  CAS  PubMed  Google Scholar 

  23. Bean AJ, Seifert R, Chen YA, Sacks R, Scheller RH. (1997) HRS-2 is an ATPase implicated in calcium-regulated secretion. Nature 385: 826–829.

    Article  CAS  PubMed  Google Scholar 

  24. Ungermann C, Sato K, Wickner W. (1998) Defining the functions of trans-SNARE pairs. Nature 396: 543–548.

    Article  CAS  PubMed  Google Scholar 

  25. Banerjee A, Kowalchyk JA, Das Gupta BR, Martin TFJ. (1996) SNAP-25 is required for a late postdocking step in Ca2+-dependent exocytosis. J. Biol. Chem. 271: 20227–20230.

    Article  CAS  PubMed  Google Scholar 

  26. Piper RC, Cooper AA, Yang H, Stevens TH. (1995) VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J. Cell Biol. 131: 603–617.

    Article  CAS  PubMed  Google Scholar 

  27. Oliver JM, Zurier RB, Berlin RD. (1975) Concavalin A cap formation on polymorphonuclear leukocytes of normal and beige (Chediak-Higashi) mice. Nature 253: 471–473.

    Article  CAS  PubMed  Google Scholar 

  28. Ito M, Sato A, Tanabe F, Ishida E, Takami Y, Shigeta S. (1989) The thiol proteinase inhibitors improve the abnormal rapid down-regulation of protein kinase C and the impaired natural killer cell activity in (Chediak-Higashi syndrome) beige mouse. Biochem. Biophys. Res. Commun. 160: 433–440.

    Article  CAS  PubMed  Google Scholar 

  29. Sato A, Tanabe F, Ito M, Ishida E, Shigeta S. (1990) Thiol proteinase inhibitors reverse the increased protein kinase C down-regulation and concavalin A cap formation in polymorphonuclear leukocytes from Chediak-Higashi syndrome (beige) mouse. J. Leukoc. Biol. 48: 377–381.

    Article  CAS  PubMed  Google Scholar 

  30. Chamberlain LH, Roth D, Morgan A, Burgoyne RD. (1995) Distinct effects of α-SNAP, 14-3-3 proteins and calmodulin on priming and triggering of regulated exocytosis. J. Cell Biol. 130: 1063–1070.

    Article  CAS  PubMed  Google Scholar 

  31. Peters C, Mayer A. (1998) Ca2+/calmodulin signals the completion of docking and triggers a late step in vacuole fusion. Nature 396: 575–580.

    Article  CAS  PubMed  Google Scholar 

  32. Schekman R. (1998) Ready … aim … fire! Nature 396: 514–515.

    Article  CAS  PubMed  Google Scholar 

  33. Aitken A, Jones D, Soneji Y, Howell S. (1995) 14-3-3 proteins: biological function and domain structure. Biochem. Soc. Trans. 23: 605–611.

    Article  CAS  PubMed  Google Scholar 

  34. Roth D, Morgan A, Burgoyne RD. (1993) Identification of a key domain in annexin and 14-3-3 proteins that stimulate calcium-dependent exocytosis in permeabilized adrenal chromaffin cells. FEBS Lett. 320: 207–210.

    Article  CAS  PubMed  Google Scholar 

  35. Jones DH, Martin H, Madrazo J, et al. (1995) Expression and structural analysis of 14-3-3 proteins. J. Mol. Biol. 245: 375–384.

    Article  CAS  PubMed  Google Scholar 

  36. Yaffe MB, Rittinger K, Volinia S, et al. (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91: 961–971.

    Article  CAS  PubMed  Google Scholar 

  37. Martin H, Rostas J, Patel Y, Aitken A. (1994) Analysis of subcellular distribution of 14-3-3 isoforms in rat brain using specific antibodies. J. Neurochem. 63: 2259–2265.

    Article  CAS  PubMed  Google Scholar 

  38. Roth D, Morgan A, Martin H, Jones D, Martens GJ, Aitken A, Burgoyne RD. (1994) Characterization of 14-3-3 proteins in adrenal chromaffin cells and demonstration of isoform-specific phospholipid binding. Biochem. J. 301: 305–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burgoyne RD, Morgan A, Robinson I, Pender N, Cheek T. (1993) Exocytosis in adrenal chromaffin cells. J. Anat. 183: 309–314.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Roth D, Burgoyne RD. (1995) Stimulation of catecholamine secretion from adrenal chromaffin cells by 14-3-3 proteins is due to reorganisation of the cortical actin network. FEBS Lett. 374: 77–81.

    Article  CAS  PubMed  Google Scholar 

  41. Meller N, Liu YC, Collins TL, Bonnefoy-Berard N, Baier G, Isakov N, Altman A. (1996) Direct interaction between protein kinase C theta (PKC theta) and 14-3-3 tau in T cells: 14-3-3 overexpression results in inhibition of PKC theta translocation and function. Mol. Cell. Biol. 16: 5782–5791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Allende JE, Allende CC. (1995) Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J. 9: 313–323.

    Article  CAS  PubMed  Google Scholar 

  43. Dufourcq-Lagelouse R, Lambert N, Duval M, et al. (1999) Chediak-Higashi syndrome associated with maternal uniparental isodisomy of chromosome 1. Europ. J. Hum. Genet. 7: 633–637.

    Article  CAS  PubMed  Google Scholar 

  44. Karim MA, Nagle DL, Kandil HH, Burger J, Moore KJ, Spritz RA. (1997) Mutations in the Chediak-Higashi syndrome gene (CHS1) indicate requirement for the complete 3801 amino acid CHS protein. Hum. Molec. Genet. 6: 1087–1089.

    Article  CAS  PubMed  Google Scholar 

  45. Certain S, Barrat F, Pastural E, et al. (2000) Protein truncation test of LYST reveals heterogenous mutations in patients with Chediak-Higashi syndrome. Blood 95: 979–983.

    PubMed  CAS  Google Scholar 

  46. Clark EA, Roths JB, Murphy ED, Ledbetter JA, Clagett JA. (1982) The beige (bg) gene influences the development of autoimmune disease in SB/Le male mice. In Heberman RB (ed). NK Cells and Other Natural Effector Cells. New York: Academic Press; pp. 301–306.

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Naomi Kitamura for provision of the anti-Hrs antibody and Pietro de Camilli for reviewing the manuscript. S.F.K. was supported by the American Cancer Society, the Arthritis Foundation, the Howard Hughes Medical Institute, and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velizar T. Tchernev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchernev, V.T., Mansfield, T.A., Giot, L. et al. The Chediak-Higashi Protein Interacts with SNARE Complex and Signal Transduction Proteins. Mol Med 8, 56–64 (2002). https://doi.org/10.1007/BF03402003

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402003

Keywords

Navigation