Skip to main content

Advertisement

Log in

The Transporter Associated With Antigen Processing (TAP): Structural Integrity, Expression, Function, and Its Clinical Relevance

  • Review Article
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The transporter associated with antigen processing (TAP), a member of the family of ABC transporters, plays a crucial role in the processing and presentation of the major histocompatibility complex (MHC) class I restricted antigens. TAP transports peptides from the cytosol into the endoplasmic reticulum, thereby selecting peptides matching in length and sequence to respective MHC class I molecules. Upon loading on MHC class I molecules, the trimeric MHC class I/β2-microglobulin/peptide complex is then transported to the cell surface and presented to CD8+ cytotoxic T cells. Abnormalities in MHC class I surface expression have been found in a number of different malignancies, including tumors of distinct histology, viral infections, and autoimmune diseases, and therefore represent an important mechanism of malignant or virus-infected cells to escape proper immune response. In many cases, this downregulation has been attributed to impaired TAP expression, which could be due to structural alterations or dysregulation. This review summarizes the physiology and pathophysiology of TAP, thereby focusing on its function in immune responses and its role in human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ortmann B, Copeman J, Lehner PJ, et al. (1997) A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 277: 1306–1309.

    Article  PubMed  CAS  Google Scholar 

  2. Spee P, Neefjes J. (1997) TAP-translocated peptides specifically bind proteins in the ER, including gp96, protein disulfide isomerase and calreticulin. Eur. J. Immunol. 27: 1441–2449.

    Article  Google Scholar 

  3. Suh W, Mitchell E, Yang Y, Peterson P, Waneck G, Williams DB. (1996) MHC class I molecules form ternary complexes with calnexin and TAP and undergo peptide regulated interaction with TAP via their extracellular domains. J. Exp. Med. 184: 337–348.

    Article  PubMed  CAS  Google Scholar 

  4. Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P. (1996) Roles for calreticulin and a novel glycoprotein, tapsin, in the interaction of MHC class I molecules with TAP. Immunity 5: 103–114.

    Article  PubMed  CAS  Google Scholar 

  5. Grandea AG, Golovina TN, Hamilton SE, et al. (2000) Impaired assembly yet normal trafficking of MHC class I molecules in tapasin mutant mice. Immunity 13: 213–222.

    Article  PubMed  CAS  Google Scholar 

  6. Pamer E, Cresswell P. (1998) Mechanism of MHC class I-resticted antigen processing. Annu. Rev. Immunol. 16: 323–358.

    Article  PubMed  CAS  Google Scholar 

  7. van Endert PM. (1999) Genes regulating MHC class I processing of antigen. Curr. Opin. Immunol. 11: 82–88.

    Article  PubMed  Google Scholar 

  8. Higgins CF. (1992) ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8: 67–113.

    Article  PubMed  CAS  Google Scholar 

  9. Anderson MP, Gregory RJ, Thompson S, et al. (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 98: 202–205.

    Article  Google Scholar 

  10. Riordan JR, Chang XB. (1992) CFTR, a channel with the structure of a transporter. Biochim. Biophys. Acta 1101: 221–222.

    Article  PubMed  CAS  Google Scholar 

  11. Aguilar-Bryan L, Clement JP, Nelson DA. (1998) Sulfonylurea receptors and ATP-sensitive potassium ion channels. Methods Enzymol. 292: 732–744.

    Article  PubMed  CAS  Google Scholar 

  12. Meissner T, Brune W, Mayatepek E. (1997) Persistent hyperinsulinaemic hypoglycaemia of infancy: therapy, clinical outcome and mutational analysis. Eur. J. Pediatr. 156: 754–757.

    Article  PubMed  CAS  Google Scholar 

  13. Gottesman MM, Pastan I. (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62: 385–427.

    Article  PubMed  CAS  Google Scholar 

  14. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. (1993) Human P-glycoprotein transports cyclosporin A and FK506. J. Biol. Chem. 268: 6077–6080.

    PubMed  CAS  Google Scholar 

  15. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. (1993) P-glycoprotein-mediated transcellular transport of MDR-reversing agents. FEBS Lett. 324: 99–102.

    Article  PubMed  CAS  Google Scholar 

  16. Powis SH, Mockridge I, Kelly A, et al. (1992) Polymorphism in a second ABC transporter gene located within the class II region of the human major histocompatibility complex. Proc. Natl. Acad. Sci. USA 89: 1463–1467.

    Article  PubMed  CAS  Google Scholar 

  17. Spies T, Bresnahan M, Bahram S, Arnold D, Blanck G, Mellins E. (1990) A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 348: 744–747.

    Article  PubMed  CAS  Google Scholar 

  18. Trowsdale J, Hanson I, Mockridge I, Beck S, Townsend A, Kelly A. (1990) Sequence encoded in the class II region of the MHC related to the ABC superfamily of transporters. Nature 348: 741–743.

    Article  PubMed  CAS  Google Scholar 

  19. Ljunggren HG, Stam N, Öhlen C, et al. (1990) Empty class I molecules come out in the cold. Nature 346: 476–480.

    Article  PubMed  CAS  Google Scholar 

  20. Spies T, DeMars R. (1991) Restored expression of MHC class I molecules by gene transfer of a putative peptide transporter. Nature 351: 323–324.

    Article  PubMed  CAS  Google Scholar 

  21. Powis SJ, Townsend AR, Deverson EV, Bastin J, Butcher GW, Howard JC. (1991) Restoration of antigenic presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature 354: 528–531.

    Article  PubMed  CAS  Google Scholar 

  22. van Kaer L, Ashton-Rickardt PG, Ploegh HL, Tonegawa S. (1992) TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD48+ T cells. Cell 71: 1205–1209.

    Article  PubMed  Google Scholar 

  23. Seliger B, Maeurer MJ, Ferrone S. (2000) Antigen processing machinery break-down and tumor growth. Immunol. Today 21: 455–464.

    Article  PubMed  CAS  Google Scholar 

  24. Armandola E, Momburg F, Nijenhuis M, Bulbuc N, Früh K, Hämmerling GJ. (1996) A point mutation in the human transporter associated with antigen processing (TAP2) alters peptide transport specificity. Eur. J. Immunol. 26: 1748–1755.

    Article  PubMed  CAS  Google Scholar 

  25. Yewdell JW, Esquivel F, Arnold D, Spies T, Eisenlohr LC, Bennink JR. (1993). Presentation of numerous viral peptides to mouse MHC class I-restricted T lymphocytes is mediated by the human MHC-encoded transporter or a hybrid mouse-human transporter. J. Exp. Med. 177: 1785–1789.

    Article  PubMed  CAS  Google Scholar 

  26. Meyer T, van Endert PM, Uebel S, Ehring B, Tampé R. (1994) Functional expression and purification of the ABC transporter complex associated with antigen processing (TAP) in insect cells. FEBS Letters 351: 443–447.

    Article  PubMed  CAS  Google Scholar 

  27. Russ G, Esquivel F, Yewdell JW, Cresswell P, Spies T, Bennink JR. (1995) Assembly, intracellular location and nucleotide binding properties of the human peptide transporters TAP1 and TAP2 expressed by recombinant vaccinia virus. J. Biol. Chem. 270: 21312–21318.

    Article  PubMed  CAS  Google Scholar 

  28. Kleijmeer MJ, Kelly Y, Geute HJ, Slot JW, Townsend A, Trowsdale J. (1992) Location of MHC-encoded transporters in the endoplasmic reticulum. Nature 357: 342–344.

    Article  PubMed  CAS  Google Scholar 

  29. Walker JE, Saraste M, Runswick MJ, Gay NJ. (1982) Distantly related sequences in the alpha and beta subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945–951.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Monaco JJ, Cho S, Attaya M. (1990) Transport protein genes in the murine MHC: possible implications for antigen processing. Science 250: 1723–1726.

    Article  PubMed  CAS  Google Scholar 

  31. Nijenhuis M, Hämmerling GJ. (1996) Multiple regions of the transporter associated with antigen processing (TAP) contribute to its peptide binding site. J. Immunol. 157: 5467–5472.

    PubMed  CAS  Google Scholar 

  32. Voss JC, Spee P, Momburg F, Neefjes JJ. (1999) Membrane topology and dimerization of the two subunits of the transporter associated with antigen processing reveal a three domain structure. J. Immunol. 163: 6679–6685.

    Google Scholar 

  33. Vos JC, Reits EA, Wojcik-Jacobs E, Neefjes JJ. (2000) Subunit interactions visualized by post-translational translocation and ER-mobility indicate a head-head/tail-tail orientation for the pore of the ABC transporter TAP. Curr. Biol. 13: 1–7.

    Article  Google Scholar 

  34. Ritz U, Momburg F, Huber C, Pircher HP, Seliger B. (2001) Identification of domains in the human peptide transporter subunit TAP1 required for TAP function. Int. Immunol. 13: 31–41.

    Article  PubMed  CAS  Google Scholar 

  35. Neefjes JJ, Momburg F, Hammerling GJ. (1993) Selectivity and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 261: 769–771.

    Article  PubMed  CAS  Google Scholar 

  36. Heemels MT, Ploegh HL. (1994) Substrate specificity of allelic variants of the TAP peptide transporter. Immunity 1: 775–779.

    Article  PubMed  CAS  Google Scholar 

  37. Momburg F, Roelse J, Hämmerling G, Neefjes J. (1994) Peptide size selection by the major histocompatibility complex-encoded peptide transporter. J. Exp. Med. 179: 1613–1618.

    Article  PubMed  CAS  Google Scholar 

  38. Momburg F, Armandola E, Post M, Hämmerling GJ. (1996) Residues in TAP2 peptide transporters controlling substrate specificity. J. Immunol. 156: 1756–1759.

    PubMed  CAS  Google Scholar 

  39. Neefjes J. Gottfried E, Roelse J, Grommé M, Obst R, Hämmerling GJ, Momburg F. (1995) Analysis of fine specificity of rat, mouse and human TAP peptide transporters. Eur. J. Immunol. 25: 1133–1136.

    Article  PubMed  CAS  Google Scholar 

  40. Koopmann JO, Post M, Neefjes JJ, Hämmerling GJ, Momburg F. (1996) Translocation of long peptides by transporters associated with antigen processing (TAP). Eur. J. Immunol. 26: 1720–1724.

    Article  PubMed  CAS  Google Scholar 

  41. Uebel S, Meyer TH, Kraas W, Kienle S, Jung G, Wiesmüller KH, Tampé R. (1995) Requirement for peptide binding to the human transporter associated with antigen processing revealed by peptide scans and complex peptide libraries. J. Biol. Chem. 270: 18512–18516.

    Article  PubMed  CAS  Google Scholar 

  42. Neisig A, Wubbolts R, Zang X, Melief C, Neefjes JJ. (1996) Allele-specific differences in the interaction of MHC class I molecules with transporter associated with antigen processing. J. Immunol. 156: 3196–3400.

    PubMed  CAS  Google Scholar 

  43. Uebel S, Kraas W, Kienle S, Wiesmüller KH, Jung G, Tampé R. (1997) Recognition principle of the TAP transporters disclosed by combinatorial peptide libraries. Proc. Natl. Acad. Sci. USA 94: 8976–8982.

    Article  PubMed  CAS  Google Scholar 

  44. van Endert PM, Tampé R, Meyer TH, Tisch R, Bach FJ, McDevitt HO. (1994) A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity 1: 4591–500.

    Google Scholar 

  45. van Endert PM, Riganelli D, Greco G, Fleischauer K, Sette A, Bach JF. (1995) The peptide-binding motif of the human transporter associated with antigen processing. J. Exp. Med. 182: 1883–1895.

    Article  PubMed  Google Scholar 

  46. Androlewicz M, Cresswell P. (1994) Human transporters associated with antigen processing possess a promiscuous peptide-binding site. Immunity 1: 7–14.

    Article  PubMed  CAS  Google Scholar 

  47. Knittler MR, Alberts P, Deverson EV, Howard JC. (1999) Nucleotide binding by TAP mediates association with peptide and release of assembled MHC class I molecules. Curr. Biol. 9: 999–1008.

    Article  PubMed  CAS  Google Scholar 

  48. Androlewicz M, Ortmann B, van Endert P, Spies T, Cresswell P. (1994) Characteristics of peptide and major histocompatibility complex class I/β2-microglobulin binding to the transporter associated with antigen processing (TAP1 and TAP2). Proc. Natl. Acad. Sci. USA 91: 12716–12720.

    Article  PubMed  CAS  Google Scholar 

  49. Koopmann JO, Albring J, Hüter E, et al. (2000) Export of antigenic peptides from the endoplasmic reticulum intersects with retrograde protein translocation through the Sec61p channel. Immunity 13: 1–20.

    Article  Google Scholar 

  50. Li Y, Salter-Cid L, Vitiello A, et al. (2000) Regulation of transporter associated with antigen processing by phosphorylation. J. Biol. Chem. 275: 24130–24135.

    Article  PubMed  CAS  Google Scholar 

  51. Beck S, Kelly A, Radley E, Kurshid F, Alderton RP, Trowsdale J. (1992) DNA sequence analysis of 66 kb of the human MHC class II region encoding a cluster of genes for antigen processing. J. Mol. Biol. 228: 433–441.

    Article  PubMed  CAS  Google Scholar 

  52. Wright KL, White LC, Kelly A, Beck S, Trowsdale J, Ting JP. (1995) Coordinate regulation of the human TAP1 and LMP2 genes from a shared bidirectional promoter. J. Exp. Med. 181: 1459–1471.

    Article  PubMed  CAS  Google Scholar 

  53. Chatterjee-Kishore M, Kishore R, Hicklin DJ, Marincola FM, Ferrone S. (1998) Different requirement for signal transducer and activator of transcription 1 α and interferon regulatory factor 1 in the regulation of low molecular mass polypeptide 2 and TAP1 gene expression. J. Biol. Chem. 273: 16177–16183.

    Article  PubMed  CAS  Google Scholar 

  54. Zhu K, Wang J, Zhu J, Jiang J, Shou J, Chen X. (1999) p53 induces TAP1 and enhances the transport of MHC class I peptides. Oncogene 18: 7740–7747.

    Article  PubMed  CAS  Google Scholar 

  55. Epperson DE, Arnold D, Spies T, Cresswell P, Pober JS, Johnson DR. (1993) Cytokines increase transporter in antigen processing-1 expression more rapidly than HLA class I expression in endothelial cells. J. Immunol. 149: 3297–3301.

    Google Scholar 

  56. Min W, Pober JS, Johnson DR. (1996) Kinetically coordinated induction of TAP1 and HLA class I by IFN-gamma. J. Immunol. 156: 3174–3183.

    PubMed  CAS  Google Scholar 

  57. Seliger B, Hammers S, Höhne A, Zeidler R, Knuth A, Gerharz CD, Huber C. (1997) HFN-γ-mediated coordinated transcriptional regulation of the human TAP-1 and LMP-2 genes in human renal cell carcinoma. Clin. Cancer Res. 3: 573–578.

    PubMed  CAS  Google Scholar 

  58. Petersson M, Charo J, Salazar-Onfray F, et al. (1998) Constitutive IL-10 production accounts for the high NK sensitivity, low MHC class I expression, and poor transporter associated with antigen processing (TAP)-1/2 function in the prototype NK target YAC-1. J. Immunol. 161: 2099–2105.

    PubMed  CAS  Google Scholar 

  59. Zeidler R, Eissner G, Meissner P, Uebel S, Tampé R, Lazis S, Hammerschmidt W. (1997) Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10. Blood 90: 2390–2397.

    PubMed  CAS  Google Scholar 

  60. Obst R, Armandola EA, Nijenhuis M, Momburg F, Hämmerling GJ. (1995) TAP polymorphism does not influence transport of peptide variants in mice and humans. Eur. J. Immunol. 25: 2170–2176.

    Article  PubMed  CAS  Google Scholar 

  61. Rueda-Faucz FR, Macagnan-Probst C, Petzl-Erler ML. (2000) Polymorphism of LMP2, TAP1, LMP7 and TAP2 in Brazilian amerindians and caucasoids: implications for the evolution of allelic and haplotypic diversity. Eur. J. Immunogenet. 27: 5–16.

    Article  Google Scholar 

  62. Yan G, Shi L, Faustmann D. (1999) Novel splicing of the human MHC-encoded peptide transporter confers unique properties. J. Immunol. 162: 852–856.

    PubMed  CAS  Google Scholar 

  63. Deverson EV, Leong L, Seelig A, Coadwell WJ, Tredgett EM, Butcher GW, Howard JC. (1998) Functional analysis by site-directed mutagenesis of the complex polymorphism in rat transporter associated with antigen processing. J. Immunol. 160: 2767–2779.

    PubMed  CAS  Google Scholar 

  64. Faustman D, Li XP, Lin HY, Fu YE, Eisenbarth G, Avruch J, Guo J. (1991) Linkage of faulty major histocompatibility complex class I to autoimmune diabetes. Science 254: 1756–1761.

    Article  PubMed  CAS  Google Scholar 

  65. Fu Y, Yan G, Shi L, Faustman D. (1998) Antigen processing and autoimmunity. Evaluation of mRNA abundance and function of HLA-linked genes. Ann. N.Y. Acad. Sci. 842: 138–155.

    Article  PubMed  CAS  Google Scholar 

  66. van Endert PM, Lopez MT, Patel SD, Monaco JJ, McDevitt HO. (1992) Genomic polymorphism, recombination, and linkage equilibrium in human major histocompatibility complex-encoded antigen-processing genes. Proc. Natl. Acad. Sci. USA 89: 11594–11597.

    Article  PubMed  Google Scholar 

  67. Hohler T, Weimann A, Schneider PM, et al. (1996) TAP-polymorphism in juvenile onset psoriasis and psoriatic arthritis. Hum. Immunol. 51: 49–54.

    Article  PubMed  CAS  Google Scholar 

  68. Singal DP, Ye M, Qiu X, D’Souza M. (1994) Polymorphisms in the TAP-2 gene and their association with rheumatoid arthritis. Clin. Exp. Rheumatol. 12: 29–33.

    PubMed  CAS  Google Scholar 

  69. Vandevyver C, Geusens P, Cassiman JJ, Raus J. (1995) Peptide transporter genes (TAP) polymorphisms and genetic susceptibility to rheumatoid arthritis. Br. J. Rheumatol. 34: 207–214.

    Article  PubMed  CAS  Google Scholar 

  70. Vejbaesya S, Luangtrakool P, Luangtrakool K, Sermduangprateep C, Pasivisutt L. (2000) Analysis of TAP and HLA-DM polymorphism in Thai rheumatoid arthritis. Hum. Immunol. 61: 309–313.

    Article  PubMed  CAS  Google Scholar 

  71. Cucca F, Congia M, Trowsdale J, Powis SH. (1994) Insulin-dependent diabetes mellitus and the major histocompatibility complex peptide transporters TAP1 and TAP2: no association in a population with a high disease incidence. Tissue Antigens 44: 234–240.

    Article  PubMed  CAS  Google Scholar 

  72. Chevrier D, Giral M, Braud V, Bourbigot B, Muller JY, Bignon JD, Soulillou JP. (1995) Effects of MHC-encoded TAP1 and TAP2 gene polymorphism and matching on kidney graft rejection. Transplant. 60: 292–296.

    Article  CAS  Google Scholar 

  73. Kobayashi T, Yokoyama I, Inoko H, et al. (2000) Significance of transporter associated with antigen processing gene polymorphism in living renal transplantation. Hum. Immunol. 61: 670–674.

    Article  PubMed  CAS  Google Scholar 

  74. Kawaguchi Y, Ikegami H, Fukuda M, Takekawa K, Fujioka Y, Fuji Ueda H, Ogihara T. (1994) Absence of association of TAP and LMP genes with type I (insulin-dependent) diabetes mellitus. Life Sci. 54: 2049–2053.

    Article  PubMed  CAS  Google Scholar 

  75. Ma L, Penfornis A, Wang X, et al. (1997) Evaluation of TAP1 polymorphism with insulin dependent diabetes mellitus in Finnish diabetic patients. Hum. Immunol. 53: 159–166.

    Article  PubMed  CAS  Google Scholar 

  76. Rau H, Nicolay A, Usadel KH, Finke R, Donner H, Walfish PG, Badenhoop K. (1997) Polymorphism of TAP1 and TAP2 genes in Graves disease. Tissue Antigens 49: 16–22.

    Article  PubMed  CAS  Google Scholar 

  77. Vandevyver C, Stinissen P, Cassiman JJ, Raus J. (1994) TAP1 and TAP2 transporter gene polymorphisms in multiple sclerosis: no evidence for disease association with TAP. J. Neuroimmunol. 54: 35–40.

    Article  PubMed  CAS  Google Scholar 

  78. Wang F, Li X, Annis B, Faustman DL. (1995) TAP1 and TAP2 gene therapy selectively restores conformationally dependent HLA class I expression in type I diabetic cells. Hum. Gene Ther. 6: 1005–1017.

    Article  PubMed  CAS  Google Scholar 

  79. Touraine JL. (1981) The bare lymphocyte syndrome. Lancet. 1: 319–321.

    Article  PubMed  CAS  Google Scholar 

  80. Gadola SD, Moins-Teisserenc HT, Trowsdale J, Gross WL, Cerundolo V. (2000) TAP deficiency syndrome. Clin. Exp. Immunol. 212: 173–178.

    Article  Google Scholar 

  81. de la Salle H, Hanau D, Fricker D, et al. (1994) Homozygous human TAP transporter mutation in HLA class I deficiency. Science 265: 237–241.

    Article  PubMed  Google Scholar 

  82. de la Salle H, Zimmer J, Fricker D, et al. (1999) HLA class I deficiencies due to mutations in subunit 1 of the peptide transporter TAP1. J. Clin. Invest. 103: R9–R13.

    Article  PubMed  PubMed Central  Google Scholar 

  83. de la Salle H, Houssaint E, Peyrat MA, et al. (1997) Human peptide transporter deficiency. J. Immunol. 158: 4555–4563.

    PubMed  Google Scholar 

  84. Teisserenc H, Schmitt W, Blake N, et al. (1997) A case of primary immunodeficiency due to a defect of the major histocompatibility gene complex class I processing and presentation pathway. Immunol. Lett. 57: 183–187.

    Article  PubMed  CAS  Google Scholar 

  85. Furukawa H, Murata S, Yabe N, et al. (1999) Splice acceptor site mutation of the transporter associated with antigen processing 1 gene in human bare Iymphocyte syndrome. J. Clin. Invest. 103: 755–758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Zimmer J, Donato L, Hanau D, Cazenave JP, Tongio MM, Moretta A, De la Salle H. (1998) Activity and phenotype of natural killer cells in peptide transporter (TAP) deficient patients (type I bare lymphocyte syndrome). J. Exp. Med. 187: 117–122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Zinkernagel RM, Doherty PC. (1979) MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction—specificity, function and responsiveness. Adv. Immunol. 27: 51–177.

    Article  PubMed  CAS  Google Scholar 

  88. Ploegh HL. (1998) Viral strategies of immune evasion. Science 280: 248–253.

    Article  PubMed  CAS  Google Scholar 

  89. Früh K, Ahn K, Djaballah H, Sampe P, van Endert PM, Tampé R. (1995) A viral inhibitor of peptide transporter for antigen presentation. Nature 375: 415–418.

    Article  PubMed  Google Scholar 

  90. Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J. (1995) Herpes simplex virus turns off TAP to evade host immunity. Nature 375: 411–415.

    Article  PubMed  CAS  Google Scholar 

  91. Lacaille VG, Androlewicz MJ. (1998) Herpes simplex virus inhibitor ICP47 destabilizes the transporter associated with antigen processing (TAP) heterodimer. J. Biol. Chem. 273: 17386–17390.

    Article  PubMed  CAS  Google Scholar 

  92. Tomazin R, van Schoot NE, Goldsmith K, Jugovic P, Sempe P, Fruh K, Johnson DC. (1998) Herpes simplex virus type 2 ICP47 inhibits human TAP but not mouse TAP. J. Virol. 72: 2560–2563.

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJHJ, Ploegh HL. (1997) The ER-luminal domain of the HCMV Glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6: 613–621.

    Article  PubMed  CAS  Google Scholar 

  94. Gilbert MJ, Riddell SR, Plachter B, Greenberg PD. (1996) Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product. Nature 383: 720–722.

    Article  PubMed  CAS  Google Scholar 

  95. Hengel H, Koopmann JO, Flohr T, Muranyi W, Goulmy E, Hämmerling GJ. (1997) A viral ER-glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6: 623–632.

    Article  PubMed  CAS  Google Scholar 

  96. Ambalga APN, Hinkley S, Srikummaran S. (2000) An early pseudorabies virus protein down-regulates porcine MHC class I expression by inhibition transporter associated with antigen processing. J. Immunol. 164: 93–99.

    Article  Google Scholar 

  97. Rotem-Yehudar R, Groettrup M, Soza A, Kloetzel PM, Ehrlich R. (1996) LMPO-associated proteolytic activities and TAP-dependent peptide transport for Class I MHC molecules are suppressed in cell lines transformed by the highly oncogenic Adenovirus 12. J. Exp. Med. 183: 499–514.

    Article  PubMed  CAS  Google Scholar 

  98. Bennett EM, Bennink JR, Yewdell JW, Brodsky FM. (1999) Adenovirus E19 has two mechanisms for affecting class I MHC expression. J. Immunol. 162: 5049–5055.

    PubMed  CAS  Google Scholar 

  99. Kring SC, Spindler KR. (1996) Lack of effect of mouse adenovirus type 1 infection on cell surface expression of major histocompatibility complex class I antigens. J. Virol. 70: 5495–5502.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Vambutas A, Bonagura VA, Steinberg BM. (2000) Altered expression of TAP1 and MHC class I in laryngeal papillomatosis: correlation of TAP1 with disease. Clin. Diagn. Lab. Immunol. 7: 79–85.

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Keating PJ, Cromme FV, Duggan-Keen M, et al. (1995) Frequency of downregulation of individual HLA-A and -B alleles in cervical carcinomas in relation to TAP1 expression. Br. J. Cancer. 72:405–411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Cromme FV, van Bommel PFJ, Walboomers JMM, et al. (1994) Differences in MHC and TAP1 expression in cervical cancer lymph node metastases as compared with the primary tumors. Br. J. Cancer 69: 1176–1181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Georgopoulos NT, Proffitt JL, Blair, GE. (2000) Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene 19: 4930–4935.

    Article  PubMed  CAS  Google Scholar 

  104. Seliger B, Harders C, Lohmann S, Momburg F, Urlinger S, Tampé R, Huber C. (1998) Down-regulation of the MHC class I antigen processing machinery after oncogenic transformation of murine fibroblasts. Eur. J. Immunol. 28: 122–133.

    Article  PubMed  CAS  Google Scholar 

  105. Kaklamanis L, Leek R, Koukourakis M, Gatter KC, Harris AL. (1995) Loss of transporter in antigen processing 1 transport protein and MHC class I molecules in metastatic versus primary breast cancer. Cancer Res. 55: 5191–5194.

    PubMed  CAS  Google Scholar 

  106. Kaklamanis L, Townsend A, Doussis-Ananostopoulou IA, Mortensen N, Harris AL, Gatter KC. (1994) Loss of MHC-encoded transporter associated with antigen processing (TAP) in colorectal cancer. Am. J. Pathol. 145: 505–509.

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Kageshita T, Hirai S, Ono T, Hicklin DJ, Ferrone S. (1999) Down-regulation of HLA class I antigen-processing molecules in malignant melanoma: association with disease progression. Am. J. Pathol. 154: 745–754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Vitale M, Rezzani R, Zauli G, Grigolato P, Cadeio M, Hicklin DJ, Ferrone S. (1998). HLA class I antigen and TAP downregulation in high grade primary breast carcinoma lesions. Cancer Res. 58: 737–742.

    PubMed  CAS  Google Scholar 

  109. Alpan RS, Zhang M, Pardee AB (1996) Cell cycle-dependent expression of TAP1, TAP2 and HLA-B27 messenger RNAs in a human breast cancer cell line. Cancer Res. 56: 4358–4361.

    PubMed  CAS  Google Scholar 

  110. Chen HL, Gabrilovich D, Tampe R, Girgis KR, Nadaf S, Carbone DP. (1996) A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nat. Genet. 13: 210–213.

    Article  PubMed  CAS  Google Scholar 

  111. Kallfelz M, Jung D, Hilmes C, Knuth A, Jaeger E, Huber C, Seliger B. (1999) Induction of immunogenicity of a human renal-cell carcinoma cell line by TAP-gene transfer. Int. J. Cancer. 81: 125–129.

    Article  PubMed  CAS  Google Scholar 

  112. Seliger B, Höhne A, Jung D, et al. (1997) Expression and function of the peptide transporter in escape variants of human rental cell carcinomas. Exp. Haematol. 25: 608–614.

    CAS  Google Scholar 

  113. Restifo N, Esquivel F, Kawakami Y, Yewdell JW, Mulé JJ, Rosenberg SA. (1993) Identification of human cancers deficient in antigen processing. J. Exp. Med. 177: 265–272.

    Article  PubMed  CAS  Google Scholar 

  114. Wolpert EZ, Petersson M, Chambers BJ, et al. (1997) Generation of CD8+ T cells specific for transporter associated with antigen processing deficient cells. Proc. Natl. Acad. Sci. USA 94: 11496–11501.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Dennis Strand, I. Medical Clinic, Johannes-Gutenberg-University, Mainz for his help regarding the immunfluorescence analysis and Mrs. I. Schmidt for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Seliger PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritz, U., Seliger, B. The Transporter Associated With Antigen Processing (TAP): Structural Integrity, Expression, Function, and Its Clinical Relevance. Mol Med 7, 149–158 (2001). https://doi.org/10.1007/BF03401948

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401948

Keywords

Navigation