Skip to main content
Log in

A Therapeutic Target for Hormone-independent Estrogen Receptor-positive Breast Cancers

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The action of the steroid hormone estradiol (E2) is mediated via interaction with a specific receptor (ER) that initiates a series of events downstream, leading to the modulation of hormone-responsive genes and cell proliferation. Antihormones also bind, but do not confer the active configuration to ER, thereby, blocking the transmission of E2-ER-initiated signals for cell proliferation. Although these compounds qualify for successful therapy of ER-positive [ER (+)] breast cancer patients, only a fraction of patients responds to antihormone treatment. In this study, the functional status of ER is determined to identify alternative targets for therapy of antihormone-resistant ER (+) breast cancers.

Method

The interaction of ER with a specific DNA sequence, designated as E2 response element (ERE), was targeted to assess the functional state of ER. ER-ERE complex formation was measured by electrophoretic mobility shift assay (EMSA) and by a newly developed technique, based on the preferential binding of DNA-protein complex to a nitrocellulose membrane (NMBA) that measures both total and functional fraction of ER.

Results

The NMBA assay identified functional variants of ER among ER (+) breast cancer cell lines and breast tumor biopsy specimens. ER of (21PT) cells did not bind E2 and these cells were tamoxifen (TAM) resistant. However 21PT cells were sensitive to a calmodulin (CaM) antagonist, W7, that blocked ERE-ER complex formation.

Conclusions

ER variants of the 21PT type were detected among breast cancer biopsy specimens, emphasizing the significance of an alternative therapeutic target for TAM-resistant ER (+) human breast cancers with compounds such as W7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jensen EV. (1981) Hormone dependency in breast cancer. Breast Cancer Res. Treat. 26: 2319–2326.

    Google Scholar 

  2. Jordan VC. (1992) The strategic use of antiestrogens to control the development and growth of breast cancer. Cancer 70: 977–982.

    PubMed  CAS  Google Scholar 

  3. Hortobagy GN. (1998) Treatment of breast cancer. N. Eng. J. Med. 339: 974–984.

    Article  Google Scholar 

  4. Lazennec G, Katzenellenbogen BS. (1999) Expression of human estrogen receptor using an efficient adenoviral gene delivery system is able to restore hormone dependent features to estrogen receptor-negative breast carcinoma cells. Mol. Cell Endocrionol. 149: 93–105.

    Article  CAS  Google Scholar 

  5. Lazennec G, Alcorn JL, Katzenellenbogen BS. (1999) Adenovirus-mediated delivery of dominant negative estrogen receptor gene abrogates estrogen stimulated gene expression and breast cancer cell proliferation. Mol. Endocrinol. 13: 969–980.

    Article  CAS  PubMed  Google Scholar 

  6. Smith DF, Toft DO. (1993) Steroid receptors and their associated proteins. Mol. Endocrinol. 7: 4–11.

    PubMed  CAS  Google Scholar 

  7. Kumar V, Chambon P. (1988) The estrogen receptor binds tightly to its response element as a ligand-induced homodimer. Cell 55: 145–156.

    Article  CAS  PubMed  Google Scholar 

  8. Tsai S-Y, Tsai M-J., O’Malley BW. (1989) Cooperative binding of steroid hormone receptors contributes to transcriptional synergism at target enhancer elements. Cell 57: 443–448.

    Article  CAS  PubMed  Google Scholar 

  9. Brown M. (1994) Estrogen receptor molecular biology. Hemat. Oncol. Clin. N. Amer. 8: 101–112.

    Article  CAS  Google Scholar 

  10. Jordan VC. (1995) Studies on the estrogen receptor in breast cancer, 20 years as target for the treatment and prevention of cancer. Breast Cancer Res. Treat. 36: 267–285.

    Article  CAS  PubMed  Google Scholar 

  11. Shibata H, Spencer TE, Sergio AO, et al. (1997) Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog. Hormone Res. 52: 141–165.

    CAS  Google Scholar 

  12. Smith CL, Conneely M, O’Malley BW. (1993) Modulation of the ligand-independent activation of the human estrogen receptor by hormone and antihormone. Proc. Natl. Acad. Sci. USA 90: 6120–24.

    Article  CAS  PubMed  Google Scholar 

  13. Osborne CK. (1991) Receptors In Breast Diseases, In Breast Cancer and Diseases. Harris JR, Hellerman S, Henderson IC, Kinne DW (eds.). 2nd Edition, Lippincott, Philadelphia, pp. 301–325.

    Google Scholar 

  14. Hedden A, Muller V, Jensen EV. (1995) A new interpretation of antiestrogen action. NY Acad. Sci. 761: 109–120.

    Article  CAS  Google Scholar 

  15. Paige LA, Christensen DJ, Gron H, et al. (1999) Estrogen receptor (ER) modulators each induce distinct conformational changes in ER α and ER β. Proc. Natl. Acad. Sci. USA 96: 3999–4004.

    Article  CAS  PubMed  Google Scholar 

  16. Love RR, Mazess RB, Barden HS, et al. (1992) Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N. Engl. J. Med. 326: 852–856.

    Article  CAS  PubMed  Google Scholar 

  17. Kedar RP, Bourne TH, Powles TJ, et al. (1994) Effects of tamoxifen on uterus and ovaries of postmenopausal women in a randomized breast cancer prevention trial. Lancet 343: 1318–1321.

    Article  CAS  PubMed  Google Scholar 

  18. Biswas DK, Cruz AP, Gansberger E, Pardee AB. (2000) Epidermal growth factor-induced nuclear factor κB activation: a major pathway of cell cycle progression in estrogen-receptor negative breast cancer cells. Proc. Natl. Acad. Sci. USA 97: 8542–8547.

    Article  CAS  PubMed  Google Scholar 

  19. Skaar TC, Prasad SC, Sharareh S, Lippman ME, Brunner N, Clarke R. (1998) Two dimensional gel electrophoresis analysis identify nucleoplasmin as an estrogen regulated protein associated with acquired estrogen-independence in human breast cancer cells. J. Steroid Chem. 67: 391–402.

    CAS  Google Scholar 

  20. Biswas DK, Cruz A, Pardee AB. (2000) Detection of estrogen receptor functional variants in human breast cancers by a novel approach. Biotechniques (In Press).

  21. Sager R, Sheng S, Anisowicz A, et al. (1994) RNA genetics of breast cancer: maspin as paradigm. Cold Spring Harbor Symp. Quant. Biol. LIX: 537–546

    Article  Google Scholar 

  22. Zajchowski DA, Band V, Trask DK, Kling D, Connolly, JL, Sager R. (1990) Suppression of tumor-forming ability and related traits in MCF-7 human breast cancer cells by fusion with mammary epithelial cells. Proc. Natl. Acad. Sci. USA 87: 2314–2318.

    Article  CAS  PubMed  Google Scholar 

  23. Biswas DK, Averboukh L, Sheng S, et al. (1998) Classification of breast cancer cells on the basis of a functional assay for estrogen receptor. Mol. Med. 4: 454–467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Biswas DK, Reddy PV, Pickard M, Makkad B, Pettit N, Pardee AB. (1998) Calmodulin is essential for estrogen receptor interaction with its motif and activation of responsive promoter. J. Biol. Chem. 273: 33817–33824.

    Article  CAS  PubMed  Google Scholar 

  25. Dignam JD, Lebovitz RM, Roeder RD. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11: 1475–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bradford MM. (1978) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    Article  Google Scholar 

  27. Porter W, Wang F, Wang W, Duan R, Safe S. (1996) Role of estrogen receptor/Sp1 complexes in estrogen-induced heat shock protein 27 gene expression. Mol. Endocrinol. 11: 1371–1378.

    Google Scholar 

  28. Sukovich DA, Kukherjee R, Benfield, PA. (1994) A novel cell-type specific mechanism for estrogen receptor mediated gene activation in the absence of estrogen-responsive element. Mol. Cell Biol. 14: 7134–7143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pegram MD, Pauletti G, Slamon DJ. (1998) HER2/neu as a predictive marker of response to breast cancer therapy. Breast Cancer Res. Treat. 52: 155–167.

    Article  CAS  Google Scholar 

  30. Hayes AJ, Li LY, Lippman ME. (1999) Science, medicine and the future. Brit. Med. 318: 853–856.

    Article  CAS  Google Scholar 

  31. Mosman T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assay. J. Immunol. Meth. 65: 55–64.

    Article  Google Scholar 

  32. Obourn JD, Koszewski NJ, Notides AC. (1993) Hormone- and DNA binding mechanisms of the recombinant human estrogen receptor. Biochemistry 32: 6229–6236.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by funds from the Commonwealth of Massachusetts, Department of Public Health and Breast Cancer Research Grants Program and National Institutes of Health NCI Grant CA61253-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajit K. Biswas.

Additional information

Communicated by AB Pardee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, D.K., Cruz, A., Pettit, N. et al. A Therapeutic Target for Hormone-independent Estrogen Receptor-positive Breast Cancers. Mol Med 7, 59–67 (2001). https://doi.org/10.1007/BF03401839

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401839

Keywords

Navigation