Skip to main content

Advertisement

Log in

Vδ1T Lymphocytes Expressing a Th1 Phenotype Are the Major γδ T Cell Subset Infiltrating the Liver of HCV-infected Persons

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Hepatitis C infection induces an acute and chronic liver inflammation that may lead to cirrhosis, liver failure, or hepatocarcinoma. Since the role of αβ T lymphocytes in hepatitis C virus (HCV) immunopathology has been analyzed extensively, we investigated the distribution and functional activation of γδ T cell subsets in chronically HCV-infected patients.

Materials and Methods

Blood samples and liver biopsies from 35 patients with compensated chronic HCV infection were compared in terms of T cell subset distribution, expression of activation markers, γδ T cell receptor (TCR) repertoire, and pattern of cytokine production. Moreover, we analyzed whether these immunological parameters were associated with other clinical observations (plasma viremia, ALT levels, Ishak index).

Results

Differing from peripheral blood distribution, a specific compartmentalization of Vδ1 T cells (p < 0.001) was observed in the liver of HCV patients. These cells represented a relevant fraction of intrahepatic T lymphocytes (1.8–8.7%) and expressed the memory/effector phenotype (CD62-L CD45-RO+CD95+). This phenotype was consistent with selective homing upon antigen recognition. Mitogenic stimulation of Vδ1+ T lymphocytes recruited in the liver revealed the T helper cell type 1 (Th1) pattern of cytokine secretion. Interestingly, the frequency of interferon-γ (IFN-γ)-producing Vδ1 T cells was associated with an higher degree of liver necroinflammation, measured by the Ishak index. Finally, the T-cell repertoire analysis revealed the absence of Vγ selection in the TCR repertoire of intrahepatic Vδ1 T cells.

Conclusions

γδ T cell distribution in the peripheral blood differs from the Vδ1 T cell subset because it is policlonally activated and recruited in the liver of chronic HCV-infected patients. During HCV-infection, this T cell subset may release Th1 cytokines and contribute to the necroinflammatory liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fiore G, Angarano I, Caccetta L, et al. (1996) In-situ immunophenotyping of hepatic-infiltrating cytotoxic cells in chronic active hepatitis C. Eur. J. Gastr. Hepatol. 9: 491–496.

    Article  Google Scholar 

  2. Cohen J. (1999) The scientific challenge of hepatitis C. Science 285: 26–30.

    Article  CAS  PubMed  Google Scholar 

  3. Chisari FV, Ferrari C. (1995) Hepatitis B virus immunopathology. Springer Semin. Immunopathol. 17: 261–281.

    Article  CAS  PubMed  Google Scholar 

  4. Bianchi L. (1983) Liver biopsy interpretation in hepatitis. Phatol. Res. Pract. 178: 180–213.

    Article  CAS  Google Scholar 

  5. Minutello MA, Pileri P, Unutmaz D, et al. (1993) Compartmentalization of T lymphocytes to the site of disease: intrahepatic CD4+ T cells specific for the protein NS4 of hepatitis C virus in patients with chronic hepatitis C. J. Exp. Med. 178: 17–25.

    Article  CAS  PubMed  Google Scholar 

  6. Nuti S, Rosa D, Valiante N, et al. (1998) Dynamics of intrahepatic lymphocytes in chronic hepatitis C: enrichment for Vα24+ T cells and rapid elimination of effector cells by apoptosis. Eur. J. Immunol. 28: 3448–3455.

    Article  CAS  PubMed  Google Scholar 

  7. Norris S, Doherty DG, Collins C, et al. (1999) Natural T cells in the human liver: cytotoxic lymphocytes with dual T cell and natural killer cell phenotype and function are phenotypically heterogeneous and include Vα24-JαQ and γδ T cell receptor bearing cells. Human Immunol. 60: 20–31.

    Article  CAS  Google Scholar 

  8. Doherty DG, Norris S, Madrigal-Estebas L, et al. (1999) The human liver contains multiple populations of NK cells, T cells, and CD3+ CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J. Immunol. 163: 2314–2321.

    PubMed  CAS  Google Scholar 

  9. Gougeon ML, Boullier S, Colizzi V, Poccia F. (1999) NKR-mediated control of γδ T cell immunity to viruses. Microbes Infect. 1: 219–226.

    Article  CAS  PubMed  Google Scholar 

  10. Poccia F, Bonneville M, Lopez-Botet M, et al. (1998) Innate T cell immunity to nonpeptidic antigens and MHC class I recognition. Immunol. Today 19: 253–256.

    Article  CAS  PubMed  Google Scholar 

  11. Parker CM, Groh V, Band H, et al. (1990) Evidence for extrathymic changes in the T cell receptor γδ repertoire J. Exp. Med. 171: 1597–1612.

    Article  CAS  PubMed  Google Scholar 

  12. Hacker G, Kromer S, Falk M, Heeg K, Wagner H, Pfeffer K. (1992) Vδ1+ subset of human γδ T cells response to ligands expressed by EBV-infected Burkitt lymphoma cells and transformed B lymphocytes. J. Immunol. 149: 3984–3989.

    PubMed  CAS  Google Scholar 

  13. Dechanet J, Merville P, Lim A, et al. (1999) Implication of γδ T cells in the human immune response to cytomegalovirus. J. Clin. Invest. 103: 1437–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Orsini DL, Res PC, Van Laar JM, et al. (1993) A subset of Vδ1+ T cells proliferates in response to Epstein-Barr virus-transformed B cell lines in vitro. Scand. J. Immunol. 38: 335–340.

    Article  CAS  PubMed  Google Scholar 

  15. Groh V, Porcelli S, Fabbi M, et al. (1989) Human lymphocytes bearing T cell receptor γ/δ are phenotypically diverse and evenly distributed throughout the lymphoid system. J. Exp. Med. 169: 1277–1294.

    Article  CAS  PubMed  Google Scholar 

  16. Groh V, Steinle A, Bauer S, Spies T. (1998) Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279: 1737–1740.

    Article  CAS  PubMed  Google Scholar 

  17. Spada FM, Grant EP, Peters PJ, et al. (2000) Self-recognition of CD1 by γ/δ T cells: implications for innate immunity. J. Exp. Med. 191: 937–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Poccia F, Boullier S, Lecoeur H, et al. (1996) Pheriperal Vγ9/Vβ2 T cell deletion and anergy to non-peptidic mycobacterial antigens in asymptomatic HIV-1 infected persons. J. Immunol 157: 449–461.

    PubMed  CAS  Google Scholar 

  19. Battistini L, Borsellino G, Sawicki G, et al. (1997) Phenotypic and cytokine analysis of human peripheral blood γδ T cells expressing NK. J. Immunol. 159: 3723–3730.

    PubMed  CAS  Google Scholar 

  20. Sanders M, Makgoba M, Dhse D. (1988) Human naive and memory T cells. Immunol. Today 9: 195–199.

    Article  CAS  PubMed  Google Scholar 

  21. Picker L, Treer J, Ferguson D, Collins P, Buck D, Terstappen LW (1993) Control of lymphocytes recirculation in man. Differential regulation of the peripheral lymponode homing receptor L-selectin on T cells during the virgin to memory cell transition. J. Immunol. 150: 1105–1121.

    PubMed  CAS  Google Scholar 

  22. Akbar AN, Terry L, Timms A, Beverley P, Janossy G. (1988) Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J. Immunol 140: 2171–2178.

    PubMed  CAS  Google Scholar 

  23. Dutton RW, Bradley LM, Swain SL. (1998) T cell memory. Annu. Rev. Immunol. 16: 201–223.

    Article  CAS  PubMed  Google Scholar 

  24. Robbins PA, Evans EL, Ding AH, Warner NL, Brodsky FM. (1987) Monoclonal antibodies that distinguish between class II antigens (HLA-DP, DQ, and DR) in 14 haplotypes. Human Immunol. 18: 301–313.

    Article  CAS  Google Scholar 

  25. Tomkinson BE, Wagner DK, Nelson DL, Sullivan JL. (1987) Activated lymphocytes during acute Epstein-Barr virus infection. J. Immunol. 139: 3802–3807.

    PubMed  CAS  Google Scholar 

  26. Shields PL, Morland CM, Salmon M, Qin S, Hubscher SG, Adams DH. (1999) Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver. J. Immunol. 163: 6236–6243.

    PubMed  CAS  Google Scholar 

  27. Koziel MJ, Dudley D, Afdhal N, et al. (1995) HLA class I-restricted cytotoxic T lymphocytes specific for hepatitis C virus. Identification of multiple epitopes and characterization of patterns of cytokine release. J. Clin. Invest. 96: 2311–2321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Napoli J, Bishop GA, McGuinness PH, Painter DM, McCauchghan GW. (1996) Progressive liver injury in chronic hepatitis C infection correlates with increased intrahepatic expression of Th1-associated cytokines. Hepatology 24: 759–765.

    Article  CAS  PubMed  Google Scholar 

  29. Kobalitz D, Pohl D, Pechold K. (1993) Activation-induced cell death (apoptosis) of mature peripheral T lymphocytes. Immunol. Today 14: 338–345.

    Article  Google Scholar 

  30. Katsikis PD, Wunderlich ES, Smith CA, Herzenberg LA, Herzenberg LA. (1995) Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficient virus-infected individuals. J. Exp. Med. 181: 2029–2036.

    Article  CAS  PubMed  Google Scholar 

  31. Fagnoni FF, Vescovini R, Passeri G, et al. (2000) Shortage of circulating naive CD8+ T cells provides new insights on immunodeficiency in aging. Blood 95: 2860–2686.

    PubMed  CAS  Google Scholar 

  32. Bleicher PA, Balk SP, Hagen SJ, Blumberg RS, Flotte TJ, Terhorst, C. (1990) Expression of murine CD1 on gastrointestinal epithelium. Science 250: 679–682.

    Article  CAS  PubMed  Google Scholar 

  33. Boullier S, Cochet M, Poccia F, Gougeon ML. (1995) CDR3-independent γδ Vδ1+ T cell expansion in the peripheral blood of HIV-1 infected persons. J. Immunol. 154: 1418–1431.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Current and Finalized Research Projects of the Italian Ministry of Health. C.A. is a fellow of the Institute for Infectious Diseases, L. Spallanzani. We thank M. Lupi, G. Cianca, C. Vasile, L. Bolognesi and D. Menna for clinical monitoring, organization, support and dedication to patient care. Finally we thank E. Akinde for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Poccia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrati, C., D’Offizi, G., Narciso, P. et al. Vδ1T Lymphocytes Expressing a Th1 Phenotype Are the Major γδ T Cell Subset Infiltrating the Liver of HCV-infected Persons. Mol Med 7, 11–19 (2001). https://doi.org/10.1007/BF03401834

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401834

Keywords

Navigation