Skip to main content

Advertisement

Log in

Interleukin-4 Receptor Expression on AIDS-Associated Kaposi’s Sarcoma Cells and Their Targeting by a Chimeric Protein Comprised of Circularly Permuted Interleukin-4 and Pseudomonas Exotoxin

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

AIDS-associated Kaposi’s sarcoma (AIDS-KS) represents one of the most common malignancies associated with human immunodeficiency virus infection. To target effective therapeutic agents to AIDS-KS, we have identified a new target in the form of interleukin-4 receptors (IL-4R).

Materials and Methods

The expression of IL-4R on AIDS-KS cells and their subunit structure was determined by radioligand receptor binding, cross-linking, and Northern and RT-PCR analyses. The in vitro effect of IL-4 and recombinant fusion protein made up of circularly permuted IL-4 and a mutated form of Pseudomonas exotoxin, IL-4(38-37)-PE38KDEL, was examined by clonogenic and protein synthesis inhibition assays.

Results

Five AIDS-KS cell lines expressed high-affinity IL-4R with a Kd of 23.5–219 pM. IL-4 appeared to crosslink to one major protein corresponding to 140 kDa and a broad band corresponding to 60–70 kDa. Both cross-linked proteins were immunoprecipitated with an antibody to human IL-4Rß chain. AIDS-KS cells exhibited IL-4Rß-specific mRNA. IL-4 caused a modest inhibition (31–34%) of colony formation in two AIDS-KS cell lines tested. IL-4(38-37)-PE38KDEL was found to be highly effective in inhibiting the protein synthesis in all five AIDS-KS examined. The IC50 ranged from 32 to 1225 pM. The cytotoxic action of IL-4 toxin was blocked by an excess of IL-4, exhibiting the specificity of IL-4(38-37)-PE38KDEL. The cytotoxicity of IL-4 toxin observed by a clonogenic assay corroborated well with the IC50 obtained by protein synthesis inhibition assay. Normal human endothelial cells expressed a negligible number of IL-4R (<50 sites/cell) and were less sensitive or not sensitive to IL-4(38-37)-PE38KDEL.

Conclusions

The presence of a new plasma membrane protein in the form of IL-4R on AIDS-KS cells may be targeted by IL-4(38-37)-PE38KDEL for its potential implication in the treatment of AIDS-KS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Freidman-Kien AE (1981) Disseminated Kaposi’s sarcoma syndrome in young homosexual men. J. Am. Acad. Dermatol. 5: 468–471.

    Article  Google Scholar 

  2. Gill PS (1991) Pathogenesis of AIDS related malignancies. Curr. Opin. Oncol. 3: 867–871.

    Article  CAS  PubMed  Google Scholar 

  3. Arms J (1989) A review of Kaposi’s sarcoma. Adv. Cancer Res. 53: 73–87.

    Article  Google Scholar 

  4. Werner S, Hofschneider PH, Roth WK (1984) Int. J. Cancer 43: 1137–1144.

    Article  Google Scholar 

  5. Corbeil J, Evans LA, Vasak E, Cooper DA, Ronald P (1991) Culture and properties of cells derived from Kaposi’s sarcoma. J. Immunol. 146: 2972–2976.

    PubMed  CAS  Google Scholar 

  6. Ensoli B, Barillari G, Gallo RC (1991) Pathogenesis of AIDS-associated Kaposi’s sarcoma. Hematol. Oncol. Clin. N. Am. 5: 281–295.

    Article  CAS  Google Scholar 

  7. Ganem D (1995) Virus, cytokines and Kaposi’s sarcoma. AIDS 5: 469–471.

    CAS  Google Scholar 

  8. Ensoli B, Gallo RC (1992) Growth factors in AIDS-associated Kaposi’s sarcoma: Cytokines and HIV-1 Tat protein. AIDS Updates 5: 1–7.

    Google Scholar 

  9. Miles SA (1994) Pathogenesis of HIV-related Kaposi’s sarcoma. Curr. Opin. Oncol. 6: 497–502.

    Article  CAS  PubMed  Google Scholar 

  10. Stürzl M, Roth WK, Brockmeyer NH, Zietz C, Speiser B, Hofschneider PH (1992) Expression of platelet-derived growth factor and its receptor in AIDS-related Kaposi’s sarcoma in vivo suggests paracrine and autocrine mechanisms of tumor maintenance. Proc. Natl. Acad. Sei. U.S.A. 89: 7046–7050.

    Article  Google Scholar 

  11. Pistritto G, Ventura L, Mores N, Lacal PM, D’Onfrio C (1994) Regulation of PDGF-B and PDGF receptor expression in the pathogenesis of Kaposi’s sarcoma in AIDS. In: Gi-raldo G, Salvatore M, Bianchi LC, Giraldo EB, (eds) Diagn. Treat. AIDS Oncol. Adv. Tech. Res. 46: 73–87.

    CAS  Google Scholar 

  12. Hermans P, Gori A, Lemone M, Franchioly P, Clumeck N (1994) Possible role of granulocyte-macrophage colony stimulating factor (GM-CSF) on the rapid progression of AIDS-related Kaposi’s sarcoma lesions in vivo. Br. J. Haematol. 87: 413–414.

    Article  CAS  PubMed  Google Scholar 

  13. Murakami-Mori K, Taga T, Kishimoto T, Nakamura S (1995) AIDS-associated Kaposi’s sarcoma (KS) cells express oncastatin-M (OM)-specific receptor but not leukemia inhibitory factor/OM receptor or interleukin-6 receptor. J. Clin. Invest. 96: 1319–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ensoli B, Nakamura S, Salahuddin SZ, et al. (1989) AIDS-Kaposi’s sarcoma-derived cells express cytokines with autocrine and paracrine growth factors. Science 243: 223–226.

    Article  CAS  PubMed  Google Scholar 

  15. Paul WE (1991) Interleukin 4: A prototypic immunoregulatory lymphokine. Blood 77: 859–1870.

    Google Scholar 

  16. Puri RK, Siegel JP (1993) Interleukin-4 and cancer therapy. Cancer Invest. 11: 473–486.

    Article  CAS  PubMed  Google Scholar 

  17. Puri RK (1995) Structure and functions of interleukin 4 and its receptors. In: Kurzock R, Talpaz M. (eds) Cytokines: Interleukins and Their Receptors. Kluwer Academic Publishers, Norwell, MA, pp. 143–185.

    Chapter  Google Scholar 

  18. Obiri NI, Hillman GG, Haas GP, Sudha S, Puri RK (1993) Expression of high affinity interleukin-4 receptors on human renal cell carcinoma cells and inhibition of tumor cell growth in vitro by interleukin 4. J. Clin. Invest. 91: 83–89.

    Article  Google Scholar 

  19. Obiri NI, Siegel JP, Varricchio F, Puri RK (1994) Expression of high-affinity IL-4 receptors on human melanoma, ovarian and breast carcinoma cells. Clin. Exp. Immunol. 95: 148–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taylor CW, Crogan TM, Salmon SE (1990) Effects of IL-4 on the in vitro growth of human lymphoid and plasma cell neoplasm. Blood 75: 1114–1118.

    PubMed  CAS  Google Scholar 

  21. Herrmann F, Andreeff M, Gruss HJ, Brach MA, Lubbert M, Martelsmann R (1991) Interleukin-4 inhibits growth of multiple myeloma by suppressing IL-6 expression. Blood 78: 2070–2074.

    PubMed  CAS  Google Scholar 

  22. Toi M, Bicknell R, Harris AL (1992) Inhibition of colon and breast carcinoma cell growth by interleukin 4. Cancer Res. 52: 275–279.

    PubMed  CAS  Google Scholar 

  23. Clerici M, Hakim FT, Venzom DJ, et al. (1993) Changes in interleukin-2 and interleukin-4 production in asymptomatic, human immunodeficiency virus-seropositive individuals. J. Clin. Invest. 93: 759–765.

    Article  Google Scholar 

  24. Park LS, Friend D, Sassenfeld HM (1987) Characterization of human B cell stimulatory factor 1 receptor. J. Exp. Med. 166: 476–488.

    Article  CAS  PubMed  Google Scholar 

  25. Ohara J (1989) Interleukin 4: Molecular structure and biochemical characteristics, biological function and receptor expression. In Cruse JM, Lewis Jr. RE (eds) The Year in Immunology. Immunoregulatory Cytokines and Cell Growth. Basil Karger, pp 126–159.

    Google Scholar 

  26. Murata T, Noguchi PD, Puri RK (1995) Receptors for interleukin (IL)-4 do not associate with the common γ chain, and IL-4 induces the phosphorylation of JAK2 tyrosine kinase in human colon carcinoma cells. J. Biol. Chem. 270: 30829–30836.

    Article  CAS  PubMed  Google Scholar 

  27. Kreitman RJ, Puri RK, Pastan I (1995) Increase antitumor activity of circularly permuted interleukin 4-toxin in mice with interleukin 4 receptor-bearing human carcinoma. Cancer Res. 55: 3357–3363.

    PubMed  CAS  Google Scholar 

  28. Puri RK, Leland P, Obiri NI, et al. (1996) An improved circularly permuted interleukin 4-toxin is highly cytotoxic to human renal cell carcinoma cells. Cell. Immunol. 171: 80–86.

    Article  CAS  PubMed  Google Scholar 

  29. Kreitman RJ, Puri RK, Pastan I (1994). A circularly permuted recombinant interleukin 4 toxin with increased activity. Proc. Natl. Acad. Sci. U.S.A. 91: 6889–6893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Puri RK, Debinski W, Obiri NI, Kreitman R, Pastan I (1994) Human renal cell carcinoma are sensitive to the cytotoxic effect of a chimeric protein composed of human interleukin-4 and Pseudomonas exotoxin. Cell. Immunol. 154: 369–379.

    Article  CAS  PubMed  Google Scholar 

  31. Puri RK, Leland P, Kreitman RJ, Pastan I (1994) Human neurological cancer cell express interleukin-4 (IL-4) receptors which are targets for the toxic effects of IL-4 Pseudomonas exotoxin chimeric protein. Int. J. Cancer 58: 574–581.

    Article  CAS  PubMed  Google Scholar 

  32. Debinski W, Puri RK, Kreitman RJ, Pastan I (1993) A wide range of human cancers express interleukin 4 (IL-4) receptors that can be targeted with chimeric toxin composed of IL-4 and Pseudomonas exotoxin. J. Biol. Chem. 268: 14065–14070.

    PubMed  CAS  Google Scholar 

  33. Debinski W, Puri RK, Pastan I (1994) Interleukin-4 receptors expressed on tumors may serve as target for anticancer therapy using chimeric Pseudomonas exotoxin. Int. J. Cancer 58: 744–748.

    Article  CAS  PubMed  Google Scholar 

  34. Masood R, Husain SR, Rahman A, Gill P (1993) Potentiation of cytotoxicity of Kaposi’s sarcoma related to immunodeficiency syndrome (AIDS) by liposome-encapsulated doxorubicin. AIDS Res. Hum. Retroviruses 8: 741–746.

    Article  Google Scholar 

  35. Obiri NI, Debinski W, Leonard WJ, Puri RK (1995) Receptors for interleukin 13: Interaction with interleukin 4 by a mechanism that does not involve the common γ chain shared by receptors for interleukin 2, 4, 7, 9 and 15. J. Biol. Chem. 270: 8797–8804.

    Article  CAS  PubMed  Google Scholar 

  36. Reinecker HC, Podolsky DK (1995) Human intestinal epithelial cells express functional cytokine receptors sharing the common gamma C chain of the interleukin 2 receptor. Proc. Natl. Acad. Sci. U.S.A. 92: 8353–8357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshida D, Piepmeier J, Weinstein M (1994) Estramustine sensitizes human glioblastoma cells to irradiation. Cancer Res. 54: 1415–1417.

    PubMed  CAS  Google Scholar 

  38. Puri RK, Leland P, Obiri NI, et al. (1996) Targeting of interleukin-13 receptor on human renal cell carcinoma cells by a recombinant chimeric protein composed of interleukin-13 and a truncated form of Pseudomonas exotoxin. Blood 87: 4333–4339.

    PubMed  CAS  Google Scholar 

  39. Munson PJ, Rodbard D (1980) Ligand: A versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107: 220–239.

    Article  CAS  PubMed  Google Scholar 

  40. Zurawski SM, Vega F, Hughe B, Zurawski G (1993) Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that function in signal transduction. EMBO J. 12: 2663–2670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Obiri NI, Leland P, Murata T, Debinski W, Puri RK (1997) The interleukin 13 receptor structure differs on various cell types and may share more than one component with interleukin 4 receptor. J. Immunol. 158: 756–764.

    PubMed  CAS  Google Scholar 

  42. Keegan AD, Beckman MP, Park LS, Paul WE (1991) The IL-4 receptor: Biochemical characterization of IL-4 binding molecules in a T cell line expressing large number of receptors. J. Immunol. 146: 2272–2279.

    PubMed  CAS  Google Scholar 

  43. Galizzi JP, Zuber CE, Cabrillat H, Djossou D, Banchereau J (1989) Internalization of human interleukin-4 and transient down regulation of its receptor in the CD23 inducible Jijoye cells. J. Biol. Chem. 264: 6984–6989.

    PubMed  CAS  Google Scholar 

  44. Galizzi JP, Zuber CE, Cabrillat H, et al. (1990) Purification of 130 kDa T cell glycoprotein which binds human interleukin-4 with high affinity. J. Biol. Chem. 265: 439–444.

    PubMed  CAS  Google Scholar 

  45. Foxwell BMJ, Woerly G, Ryffel B (1989) Identification of interleukin 4 receptor-associated proteins and expression of both high and low affinity binding on human lymphoid cells. Eur. J. Immunol. 19: 1637–1641.

    Article  CAS  PubMed  Google Scholar 

  46. Russell SM, Keegan AD, Harada N, et al. (1993) Interleukin-2 receptor gamma chain: A functional component of the interleukin-4 receptor. Science 262: 1880–1883.

    Article  CAS  PubMed  Google Scholar 

  47. Vita N, Lefort S, Laurent P, Caput D, Ferrara P (1995) Characterization and comparison of the interleukin 13 receptor with the interleukin 4 receptor on several cell types. J. Biol. Chem. 270: 3512–3517.

    Article  CAS  PubMed  Google Scholar 

  48. Noguchi M, Aldestein S, Cao X, Leonard W (1994) Interleukin-2 receptor gamma chain: A functional component of the interleukin-7 receptor. Science 263: 1453–1454.

    Article  Google Scholar 

  49. Freedman VH, Shin SI (1974) Cellular tu-morigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell 3: 355–359.

    Article  CAS  PubMed  Google Scholar 

  50. Mosley B, Beckmann P, March CJ, et al. (1989) The murine interleukin-4 receptor: Molecular cloning and characterization of secreted and membrane bound forms. Cell 59: 335–348.

    Article  CAS  PubMed  Google Scholar 

  51. Keegan AD, Nelms K, Wang L.-M, Pierce JH, Paul WE (1994) Interleukin 4 receptor: Signaling mechanism. Immunol. Today 15: 423–432.

    Article  CAS  PubMed  Google Scholar 

  52. Harada N, Yang G, Miyajima A, Howard M (1992) Identification of an essential region for growth signal transduction in the cytoplasmic domain of the human interleukin-4 receptor. J. Biol Chem. 267: 22752–22758.

    PubMed  CAS  Google Scholar 

  53. Obiri NI, Puri RK (1994) Characterization of interleukin-4 receptors expressed on human renal cell carcinoma cell. Oncol. Res. 6: 419–427.

    PubMed  CAS  Google Scholar 

  54. Husain SR, Leland P, Aggarwal BB, Puri RK (1996) Transcriptional regulation of interleukin 4 receptors by human immunodeficiency virus type 1 tat gene. AIDS Res. Hum. Retroviruses 12: 1349–1359.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. T. Murata and T. Eggerman for reading this manuscript. Dr. Nicholas Obiri for suggestions and providing radiolabeled IL-4, and Pam Dover for sustained technical help. We also thank Dr. T. Murata for helping us with designing RT-PCR experiments. Part of this work was done while S. R. Husain held a National Research Council-National Institute of Health, Center for Biologics Evaluation and Research, Senior Research Associateship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj K. Puri.

Additional information

Communicated by I. Pastan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Husain, S.R., Gill, P., Kreitman, R.J. et al. Interleukin-4 Receptor Expression on AIDS-Associated Kaposi’s Sarcoma Cells and Their Targeting by a Chimeric Protein Comprised of Circularly Permuted Interleukin-4 and Pseudomonas Exotoxin. Mol Med 3, 327–338 (1997). https://doi.org/10.1007/BF03401811

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401811

Keywords

Navigation