Skip to main content

Advertisement

Log in

The Non-Ligand Binding β-Isoform of the Human Glucocorticoid Receptor (hGRβ): Tissue Levels, Mechanism of Action, and Potential Physiologic Role

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Alternative splicing of the transcripts of the human glucocorticoid receptor gene results in two mutually exclusive products, the classic, ligand-binding glucocorticoid receptor (hGRα), and a dominant negative non-ligand-binding isoform, hGRβ.

Materials and Methods

We examined the existence of and quantified both hGRα and hGRβ isoforms in a panel of human tissues, as well as in intact and fractionated HeLa cells, using specific quantitative Western blots and/or immunocytochemistry. We studied the potential interactions of hGRβ with heat shock protein (hsp) 90 and/or hGRα using cross-immunoadsorption/precipitation procedures followed by Western blots.

Results

For the first time, we demonstrated the natural existence of the hGRβ protein, which was widely expressed in human tissues. The ratio of immunoreactive hGRα to hGRβ varied from 0.2 to 1.0 among different tissues, and was approximately 0.2 in HeLa cells. In the latter, both isoforms were distributed in the cytoplasm and nucleus in the absence of the hormonal ligand, and translocated into the nucleus after addition of dexamethasone. The cytosolic and nuclear hGRα-to-hGRβ ratio remained the same before and after dexamethasone exposure, suggesting that upon activation the two isoforms translocated into the nucleus in equal proportions. hGRα- and hGRβ-specific antibodies cross-adsorbed and precipitated cytosolic and nuclear glucocorticoid hGRα and hGRβ, respectively, as well as hsp90, suggesting that hGRα and hGRβ are in complex with hsp90 and/or each other.

Conclusions

The hGRβ protein is widely expressed throughout the human body and present mostly in the cytoplasm of human cells, in complex with hsp90 and other proteins. In the presence of glucocorticoid, hGRβ probably heterodimerizes with ligand-bound hGRα and translocates into the nucleus to act as a dominant negative inhibitor of the classic receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hollenberg SM, Weinberger C, Ong ES, et al. (1985) Primary structure and expression of functional human glucocorticoid receptor cDNA. Nature 318: 635–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Encio IJ, Detera-Wadleigh SD. (1991) The genomic structure of the human glucocorticoid receptor. J. Biol. Chem. 266: 7182–7188.

    PubMed  CAS  Google Scholar 

  3. Giguere V, Hollenberg SM, Rosenfeld MG, Evans RM. (1986) Functional domains of human glucocorticoid receptor. Cell 46: 645–652.

    Article  CAS  PubMed  Google Scholar 

  4. Hurley DM, Accili D, Stratakis CA, et al. (1991) Point mutation causing a single amino acid substitution in the hormonebinding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J. Clin. Invest. 87: 680–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karl M, Lamberts SWJ, Detera-Wadleigh SD, et al. (1993) Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene. J. Clin. Endocrinol. Metab. 76: 683–689.

    PubMed  CAS  Google Scholar 

  6. Chrousos GP, Detera-Wadleigh SD, Karl M. (1993) Syndromes of glucocorticoid resistance. Ann. Intern. Med. 119: 1113–1124.

    Article  CAS  PubMed  Google Scholar 

  7. Bamberger CM, Bamberger A-M, Castro M, Chrousos GP. (1995) Glucocorticoid receptor-β, a potential endogenous inhibitor of glucocorticoid action in humans. J. Clin. Invest. 95: 2435–2441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oakley RH, Sar M, Cidlowski JA. (1996) The human glucocorticoid receptor β isoform. J. Biol. Chem. 271: 9550–9559.

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto KR. (1985) Steroid receptor regulated transcription of specific genes and gene networks. Annu. Rev. Genet. 19: 209–252.

    Article  CAS  PubMed  Google Scholar 

  10. Picard D, Yamamoto KR. (1987) Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J. 6: 3333–3340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Evans RM. (1988) The steroid and thyroid hormone receptor superfamily. Science 240: 889–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Picard D, Salserand JS, Yamamoto KR. (1988) A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell 54: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  13. Truss M, Beato M. (1993) Steroid hormone receptors: Interaction with deoxyribonucleic acid and transcription factors. Endocr. Rev. 14: 459–479.

    PubMed  CAS  Google Scholar 

  14. Kaumaya PTP, Berndt KDA, Heidorn DB, Ttrewhella J, Kezdy FJ, Goldberg E. (1990) Synthesis and biophysical characterization of engineered topograph immunogenic determinant with α α topology. Biochemistry 29: 13–23.

    Article  CAS  PubMed  Google Scholar 

  15. Ulrich SM, Moore SK, Appella E, May P. (1989) Transcriptional and translation analysis of the murine 84- and 86-KDa heat shock proteins. J. Biol. Chem. 264: 6810–6816.

    Google Scholar 

  16. Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  17. Elliot S, Goldsmith P, Knepper M, Haughey M, Olson B. (1996) Urinary excretion of aquaporin-2 in humans: a potential marker of collecting duct responsiveness to vasopressin. J. Am. Soc. Nephrol. 7: 403–409.

    PubMed  CAS  Google Scholar 

  18. Tomita M, Chrousos GP, Brandon DD, et al. (1985) Glucocorticoid receptors in Epstein-Barr virus-transformed human lymphocytes. Horm. Metabol. Res. 17: 674–678.

    Article  CAS  Google Scholar 

  19. Karl M, Steven SWJ, Koper JW, et al. (in press) Cushing’s disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel, dominant-negative glucocorticoid receptor mutation. PAAP. 108: 296–307.

  20. Wang Y, Micsicek RJ. (1991) Identification of a dominant negative form of the human estrogen receptor. Mol. Endocrinol. 5: 1707–1715.

    Article  CAS  PubMed  Google Scholar 

  21. Vegeto E, Shahbaz MM, Wen DX, Goldman ME, O’Malley BW. (1993) Human progesterone A form is a cell- and promoter-specific repressor of human progesterone receptor B function. Mol. Endocrinol. 7: 1244–1255.

    PubMed  CAS  Google Scholar 

  22. Katz D, Lazar MA. (1993) Dominant negative activity of an endogenous thyroid hormone receptor variant (α2) is due to competition for binding sites on target genes. J. Biol. Chem. 268: 20904–20910.

    PubMed  CAS  Google Scholar 

  23. Nagaya T, Jameson JL. (1993) Thyroid hormone resistance syndrome: Correlation of dominant negative activity and location of mutations. J. Clin. Endocrinol. Metab. 77: 982–990.

    PubMed  CAS  Google Scholar 

  24. Cooney AJ, Leng X, Tsai Si, Tsai M-J, O’Malley BW. (1993) Multiple mechanism of chicken ovalbumin upstream promotor transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and the retinoic acid receptors. J. Biol. Chem. 268: 4252–4160.

    Google Scholar 

  25. Liu R-T, Suzuki S, Miyamoto T, Takeda T, Ozata M, DeGroot LJ. (1995) The dominant negative effect of thyroid receptor splicing variant α2 does not require binding to a thyroid response element. Mol. Endocrinol. 9: 86–95.

    PubMed  CAS  Google Scholar 

  26. Pratt WB. (1993) The role of heat shock protein in regulating the function, folding, and trafficking of the glucocorticoid receptor. J. Biol. Chem. 268: 21455–21458.

    PubMed  CAS  Google Scholar 

  27. Pratt WB, Sanches ER, Bresnick EH, et al. (1989) Interaction of the glucocorticoid receptor with the MW 90,000 heat shock protein: An envolving model of ligand-mediated transformation and translocation. Cancer Res. 49: 2222–2229.

    Google Scholar 

  28. Dalman CF, Scherrer CL, Taylors PL, Akil H, Pratt WB. (1991) Localization of the 90-kDa heat shock protein-binding site within the hormone-binding domain of the glucocorticoid receptor by peptide competition. J. Biol. Chem. 266: 3482–3490.

    PubMed  CAS  Google Scholar 

  29. Tsai M-J, O’Malley BW. (1994) Molecular mechanism of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63: 451–479.

    Article  CAS  PubMed  Google Scholar 

  30. Smith DF. (1993) Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol. Endocrinol. 7: 1418–1429.

    PubMed  CAS  Google Scholar 

  31. Tilders FJ, DeRijk RH, Van Damm AM, Vincent VA, Schotanus K, Persoons JH. (1994) Activation of the hypothalamic-pituitary-adrenal axis by bacterial endotoxins: Routes and intermediate signals. Psychoneuroendocrinology 19: 209–232.

    Article  CAS  PubMed  Google Scholar 

  32. Chrousos GP. (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 332: 1351–1362.

    Article  CAS  PubMed  Google Scholar 

  33. Chrousos GP, Castro M, Leung DY, et al. (in press) Molecular mechanisms of glucocorticoid resistance/hypersensitivity: Potential clinical implications. Am. J. Respir. Crit. Care Med.

  34. Sher ER, Leung DY, Surs W, et al. (1994) Steroid-resistant asthma. Cellular mechanisms contributing to inadequate responses to glucocorticoid therapy. J. Clin. Invest. 93: 33–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Castro M, Leung DY, Karl M, et al. (1996) Changes in the alternative splicing of the glucocorticoid receptor gene might contribute to the pathogenesis of glucocorticoid-resistant asthma. Program of the 10th International Congress of Endocrinology, San Francisco. Abstract.

Download references

Acknowledgments

We thank Keith Zachman for superb technical assistance and Dr. B. K. Kishore, NHLBI, for his assistance with the quantitative Western blots. M. de Castro is supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP—Proc 93/3735-6), Brasil.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Castro, M., Elliot, S., Kino, T. et al. The Non-Ligand Binding β-Isoform of the Human Glucocorticoid Receptor (hGRβ): Tissue Levels, Mechanism of Action, and Potential Physiologic Role. Mol Med 2, 597–607 (1996). https://doi.org/10.1007/BF03401643

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401643

Navigation