Skip to main content
Log in

Nuclear Magnetic Resonance Studies of Glucose Metabolism in Non-Insulin-Dependent Diabetes Mellitus Subjects

  • Minireview
  • Published:
Molecular Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bogardus C, Lillioja S, Howard BV, Reaven G, Mott D. (1984) Relationship between insulin secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and non-insulin-dependent diabetic subjects. J. Clin. Invest. 74: 1238–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. DeFronzo RA, Ferrannini E, Simonson DC. (1989) Fasting hyperglycemia in non-insulin dependent diabetes mellitus: Contribution of excessive hepatic glucose production and impaired tissue glucose uptake. Metab. Clin. Exp. 38: 387–395.

    Article  CAS  PubMed  Google Scholar 

  3. Sillerud LO, Shulman RG. (1983) Structure and metabolism of mammalian liver glycogen monitored by 13C NMR. Biochemistry 22: 1087–1094.

    Article  CAS  PubMed  Google Scholar 

  4. Jue T, Rothman DL, Tavitian BA, Shulman RG. (1989) Natural abundance 13CNMR study of glycogen repletion in human liver and muscle. Proc. Natl. Acad. Sci. U.S.A. 86: 1439–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gruetter R, Prolla TA, Shulman RG. (1991) 13C NMR visibility of rabbit muscle glycogen in vivo. Magn. Res. Med. 20: 327–332.

    Article  CAS  Google Scholar 

  6. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N. Engl. J. Med. 322: 223–228.

    Article  CAS  PubMed  Google Scholar 

  7. Rothman DL, Magnusson I, Cline G, et al. (1995) Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin dependent diabetes mellitus. Proc. Natl. Acad. Sci. U.S.A. 92: 983–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doven AG, Ramlal T, Rostogi S, et al. (1990) Exercise induces recruitment of the “insulin-responsive glucose transporter.” J. Biol. Chem. 265: 13427–13430.

    Google Scholar 

  9. Wallberg-Henriksson H, Constable SH, Young DA, Holloszy JO. (1988) Glucose transport into rat skeletal muscle: Interaction between exercise and insulin. J. Appl. Physiol. 65: 909–913.

    Article  CAS  PubMed  Google Scholar 

  10. Roach PJ, Larner J. (1976) Rabbit skeletal muscle glycogen synthase II: Enzyme phosphorylation state and effector concentrations as interacting control parameters. J. Biol. Chem. 251: 1920–1925.

    PubMed  CAS  Google Scholar 

  11. Harris RA. (1992) Carbohydrate metabolism 1: Major metabolic pathways and their control. In: Devlin TM (ed). Textbook of Biochemistry with Clinical Correlations. Wiley-Liss, New York, pp. 343–351.

    Google Scholar 

  12. Pan JW, Hamm JR, Rothman DL, Shulman RG. (1989) In-vitro titration of phosphomonoesters by 1H decoupled 31P NMR in human skeletal muscle after exercise. In: Abstract Soc. Magn. Reson. Med., 8th Annual Meeting. Amsterdam p. 542.

  13. Lueck JD, Fromm HJ. (1975) Kinetics, mechanism, and regulation of rat skeletal muscle hexokinase. J. Biol. Chem. 249: 2259–2268.

    Google Scholar 

  14. Pendergrass J, Fazioni E, Saccomani MP, Collins D, Giovannia G. (1995) In vivo glucose transport and phosphorylation in skeletal muscle is impaired in insulin resistant, normal glucose tolerant offspring of two NIDD parents. Abstract in Diabetes 44: 197.

    Google Scholar 

  15. Bonadonna RC, Del Prato S, Saccomani MP, et al. (1993) Transmembrane glucose transport in skeletal muscle of patients with non-insulin dependent diabetes. J. Clin. Invest. 92: 486–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Piras R, Rothman LB, Cabib E. (1968) Regulation of muscle glycogen synthetase by metabolites. Differential effects of the I and D forms. Biochemistry 7: 56–66.

    Article  CAS  PubMed  Google Scholar 

  17. Harris RC, Hultman E, Nordesjo L-O. (1974) Glycogen, glycolytic intermediates and high energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest: methods and variance of values. Scand. J. Clin. Invest. 33: 109–120.

    Article  CAS  PubMed  Google Scholar 

  18. Kacser H, Burns JA. (1973) The control of flux. Symp. Soc. Exp. Biol. 27: 65–104.

    PubMed  CAS  Google Scholar 

  19. Shulman RG, Bloch G, Rothman DL. (1995) In vivo regulation of muscle glycogen synthase and the control of glycogen synthesis. Proc. Natl. Acad. Sci. U.S.A. 92: 8535–8542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shulman RG, Rothman DL. (1996) Enzymatic phosphorylation of muscle glycogen synthase: A mechanism for maintenance of metabolic homeostasis. Broc. Natl. Acad. Sci. U.S.A. 93: 7491–7495.

    Article  CAS  Google Scholar 

  21. Richter EA, Garetto LP, Goodman MN, Ruderman NB. (1984) Enhanced muscle glucose metabolism after exercise: Modulation by local factors. Am. J. Bhysiol. 246: E476–E482.

    CAS  Google Scholar 

  22. Maehlum S, Hostmark AT, Hermansen L. (1977) Synthesis of muscle glycogen during recovery after severe exercise in diabetic and non-diabetic subjects. Scand. J. Clin. Invest. 37: 309–316.

    Article  CAS  PubMed  Google Scholar 

  23. Price TB, Rothman DL, Taylor R, Shulman GI, Avison MJ, Shulman RG. (1994) Human muscle glycogen resynthesis after exercise: Insulin-dependent and independent phases. J. Appl. Bhysiol. 76: 104–111.

    Article  CAS  Google Scholar 

  24. Price TB, Perseghin G, Duleba A, et al. (1996) NMR studies of muscle glycogen synthesis in insulin resistant offspring of NIDDM parents immediately following glycogen depleting exercise. Broc. Natl. Acad. U.S.A. 93: 5329–5334.

    Article  CAS  Google Scholar 

  25. Shulman RG, Rothman DL, Price TB. (1996) NMR studies of muscle and applications to exercise and diabetes. Diabetes 45: S93–S98.

    Article  PubMed  Google Scholar 

  26. David M, Petit WA, Laughlin MR, Shulman RG, King JE, Barrett EJ. (1990) Simultaneous synthesis and degradation of rat liver glycogen: An in vivo NMR spectroscopic study. J. Clin. Invest. 86: 612–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magnusson I, Rothman DL, Jucker B, Cline GW, Shulman RG, Shulman GI. (1994) Liver glycogen turnover in fed and fasted humans. Am. J. Bhysiol. 266: E796–E803.

    CAS  Google Scholar 

  28. Rothman DL, Magnusson I, Katz LD, Shulman RG, Shulman GI. (1991) Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans using 13CNMR. Science 254: 573–576.

    Article  CAS  PubMed  Google Scholar 

  29. Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. (1992) Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Invest. 90: 1323–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

These results have been collaborative throughout, and my colleagues are mentioned in the references. I would particularly like to acknowledge the contributions of Professors D. L. Rothman and Gerald I. Shulman.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shulman, R.G. Nuclear Magnetic Resonance Studies of Glucose Metabolism in Non-Insulin-Dependent Diabetes Mellitus Subjects. Mol Med 2, 533–540 (1996). https://doi.org/10.1007/BF03401638

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401638

Navigation