Skip to main content
Log in

Nerve Growth Factor Prevents Both Neuroretinal Programmed Cell Death and Capillary Pathology in Experimental Diabetes

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Chronic diabetes causes structural changes in the retinal capillaries of nearly all patients with a disease duration of more than 15 years. Acellular occluded vessels cause hypoxia, which stimulates sight-threatening abnormal angiogenesis in 50% of all type I diabetic patients. The mechanism by which diabetes produces acellular retinal capillaries is unknown.

Materials and Methods

In this study, evidence of programmed cell death (PCD) was sought in the retinas of early diabetic rats, and the effect of nerve growth factor (NGF) on PCD and capillary morphology was evaluated.

Results

Diabetes induced PCD primarily in retinal ganglion cells (RGC) and Muller cells. This was associated with a transdifferentiation of Muller cells into an injury-associated glial fibrillary acidic protein (GFAP)-expressing phenotype, and an up-regulation of the low-affinity NGF receptor p75NGFR on both RGC and Muller cells. NGF treatment of diabetic rats prevented both early PCD in RGC and Muller cells, and the development of pericyte loss and acellular occluded capillaries.

Conclusions

These data provide new insight into the mechanism of diabetic retinal vascular damage, and suggest that NGF or other neurotrophic factors may have potential as therapeutic agents for the prevention of human diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klein R, Klein BEK, Moss S, Davis MD, DeMets DL. (1984) The Wisconsin Epidemiologic Study of Diabetic Retinopathy II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch. Ophthalmol. 104: 520–526.

    Article  Google Scholar 

  2. Klein R, Klein BEK, Moss S, Davis MD, DeMets DL. (1984) The Wisconsin Epidemiologic Study of Diabetic Retinopathy III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch. Ophthalmol. 102: 527–532.

    Article  CAS  PubMed  Google Scholar 

  3. Engerman RL. (1989) The pathogenesis of diabetic retinopathy. Diabetes 38: 1203–1206.

    Article  CAS  PubMed  Google Scholar 

  4. Krolewski AS, Warram JH, Rand LI, Kahn CR. (1987) Epidemiologic approach to the etiology of Type I diabetes mellitus and its complications. N. Engl. J. Med. 317: 1390–1398.

    Article  CAS  PubMed  Google Scholar 

  5. The Diabetic Retinopathy Study Research Group. (1981) Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of DRS findings. Report No. 8. Ophthalmology 88: 583–600.

    Article  Google Scholar 

  6. Kinoshita JH. (1990) A thirty year journey in the polyol pathway. Exp. Eye Res. 50: 567–573.

    Article  CAS  PubMed  Google Scholar 

  7. DeRubertis FR, Craven PA. (1994) Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes 43: 1–8.

    Article  CAS  PubMed  Google Scholar 

  8. King GL, Shiba T, Oliver J, et al. (1994) Cellular and molecular abnormalities in the vascular endothelium of diabetes mellitus. Annu. Rev. Med. 45: 179–188.

    Article  CAS  PubMed  Google Scholar 

  9. Williamson JR, Chang K, Frangos M, et al. (1993) Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42: 801–813.

    Article  CAS  PubMed  Google Scholar 

  10. Hammes H-P, Martin S, Federlin K, et al. (1991) Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc. Natl. Acad. Sci. U.S.A. 88: 11555–11558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wyllie AH. (1993) Apoptosis. Br. J. Cancer 67: 205–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Williams GT, Smith CA. (1993) Molecular regulation of apoptosis: Genetic controls on cell death. Cell 74: 777–779.

    Article  CAS  PubMed  Google Scholar 

  13. Altar CA, Burton LE, Bennet GL, Dugich-Djordjevic M. (1991) Recombinant human nerve growth factor is biologically active and labels novel high-affinity binding sites in rat brain. Proc. Natl. Acad. Sci. U.S.A. 88: 281–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuwabara T, Cogan DG. (1960) Studies of retinal vascular patterns: normal architecture. Arch. Ophthalmol. 64: 904–911.

    Article  CAS  PubMed  Google Scholar 

  15. Engerman RL, Kern TS. (1987) Progression of diabetic retinopathy during good glycemie control. Diabetes 36: 808–812.

    Article  CAS  PubMed  Google Scholar 

  16. Gavrieli Y, Sherman Y, Ben-Sasson SA. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119: 493–501.

    Article  CAS  PubMed  Google Scholar 

  17. Okada M, Matsumura M, Ogino N, Honda Y. (1990) Muller cells in detached human retina express glial fibrillary acidic protein and vimentin. Graefes. Arch. Clin. Exp. Ophthal. 228: 467–474.

    Article  CAS  Google Scholar 

  18. Osborne NN, Block F, Sontag KH. (1991) Reduction of ocular blood flow results in glial fibrillary acidic protein expression in rat retinal Muller cells. Vis. Neurosci. 7: 637–639.

    Article  CAS  PubMed  Google Scholar 

  19. Humphrey MF, Constable IJ, Chu Y, Wiffen S. (1993) A quantitative study of the lateral spread of Muller cell responses to retinal lesions in the rabbit. J. Comp. Neurol. 334: 545–558.

    Article  CAS  PubMed  Google Scholar 

  20. Carmignoto G, Comelli MC, Candeo P, et al. (1991) Expression of NGF receptor and NGF receptor mRNA in the developing and adult rat retina. Exp. Neurol. 111: 302–311.

    Article  CAS  PubMed  Google Scholar 

  21. Rabizadeh S, Oh J, Zhong LT, et al. (1993) Induction of apoptosis by the low-affinity NGF receptor. Science 261: 345–348.

    Article  CAS  PubMed  Google Scholar 

  22. Wolter JR. (1961) Diabetic retinopathy. Am. J. Ophthal. 51: 1123–1141.

    PubMed  CAS  Google Scholar 

  23. Hori S, Mukai N. (1989) Ultrastructural lesions of retinal pericapillary Muller cells in streptozotocin-induced diabetic rats. Albrecht Von Graefes Archiv Klinische Exp. Opthalmol. 213: 1–9.

    Google Scholar 

  24. Carmignoto G, Maffei L, Candeo P, et al. (1989) Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section. J. Neurosci. 9: 1263–1272.

    Article  CAS  PubMed  Google Scholar 

  25. Siliprandi R, Canella R, Carmignoto G. (1993) Nerve growth factor promotes functional recovery of retinal ganglion cells after ischemia. Invest. Opthalmol. Vis. Sci. 34: 3232–3245.

    CAS  Google Scholar 

  26. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE. (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl. Acad. Sci. U.S.A. 92: 905–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ferrara N. (1993) Vascular endothelial growth factor. Trends Cardiovasc. Med. 3: 244–250.

    Article  CAS  PubMed  Google Scholar 

  28. Jakeman LB, Winer J, Bennet GL, Altar CA, Ferrara N. (1992) Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. J. Clin. Invest. 89: 244–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grant DK 33861-07, the Juvenile Diabetes Foundation, and Grant Hal755/1-1 from the Deutsche Forschungsgemeinschaft. We would like to thank Dr. John A. Kessler, Albert Einstein College of Medicine, for making NGF-treated animal tissue available to us.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammes, HP., Federoff, H.J. & Brownlee, M. Nerve Growth Factor Prevents Both Neuroretinal Programmed Cell Death and Capillary Pathology in Experimental Diabetes. Mol Med 1, 527–534 (1995). https://doi.org/10.1007/BF03401589

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401589

Navigation