Skip to main content
Log in

Differential Expression of Human Tissue Factor in Normal Mammary Epithelial Cells and in Carcinomas

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Tissue factor (TF) is a glycoprotein which binds factor VIIa. The TF-VIIa complex serves as a potent initiator of the coagulation pathways. TF, an immediate early gene, may also play a role in cell growth. Expression of TF was correlated with some types of cancers.

Materials and Methods

Normal, immortalized, and tumor human mammary epithelial cells were used in the experiments. The differential display (DD) technique was used to identify genes differentially expressed in the cells. TF expression patterns were examined by Northern blot analysis, immunofluorescence staining of cultured cells, and immunohistochemical staining in human cryostat sections.

Results

In a 5-way display, an amplified polymerase chain reaction (PCR) product was found in normal and immortalized human mammary epithelial cells but not in the breast cancer cells. The PCR fragment was cloned and sequenced. The result showed that the fragment was identical to human tissue factor. Northern blot analysis showed that expression level of tissue factor mRNA remained high in growing, quiescent, and senescent normal mammary epithelial cells. Immunofluorescence staining also confirmed tissue factor expression pattern in the cell lines tested. Immunohistochemical staining showed that tissue factor was expressed in the normal luminal and myoepithelial cells of some ducts but not others. No staining was observed in invasive carcinoma cells. However, myoepithelial cell staining was seen in some residual ductal structures in invasive tumors.

Conclusions

This study shows the use of DD to reveal the loss of TF expression pattern in human breast cancer cell lines. Immunohistochemical staining results showed breast carcinoma cells expressed little TF, if any, suggesting that TF is not required for breast tumor cell invasion. The results also indicated that TF expression was independent of the proliferation status of the expressing cells. The expression pattern of TF may be a meaningful marker in the development of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bach R, Nemerson Y, Konigsberg WH. (1981) Purification and characterization of bovine tissue factor. J. Biol. Chem. 256: 8324–8336.

    PubMed  CAS  Google Scholar 

  2. Nemerson Y. (1988) Tissue factor and hemostasis. Blood 71: 1–8.

    PubMed  CAS  Google Scholar 

  3. Edgington TS, Mackman N, Brand K, Ruf W. (1991) The structural biology of expression and function of tissue factor. Thromb. Haemostas. 66: 67–79.

    Article  CAS  Google Scholar 

  4. Davie EW, Fujikawa K, Kisiel W. (1991) The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 30: 10363–10370.

    Article  CAS  PubMed  Google Scholar 

  5. Hartzell S, Ryder K, Lanahan A, Lau LF, Nathans D. (1989) A growth factor-responsive gene of murine BALB/c3T3 cells encodes a protein homologous to human tissue factor. Mol. Cell. Biol. 9: 2567–2573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Drake TA, Morrissey JH, Edgington TS. (1989) Selective cellular expression of tissue factor in human tissues. Am. J. Pathol. 134: 1087–1097.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Ruf W, Edgington TS. (1994) Structural biology of tissue factor, the initiator of thrombogenesis in vivo. F.A.S.E.B. J. 8: 385–390.

    CAS  Google Scholar 

  8. Sack GH, Levin J, Bell WR. (1977) Trousseau’s syndrome and other manifestations of chronic disseminated coagulopathy in patients with neoplasm: Clinical, pathophysiologic and therapeutic features. Medicine 56: 1–37.

    Article  PubMed  Google Scholar 

  9. Rickles FR, Levine M, Edwards RL. (1992) Hemostatic alterations in cancer patients. Cancer Metast. Rev. 11: 237–248.

    Article  CAS  Google Scholar 

  10. Rao LWM. (1992) Tissue factor as a tumor procoagulant. Cancer Metast. Rev. 11: 249–266.

    Article  CAS  Google Scholar 

  11. Kwaan HC. (1992) The plasminogen-plas-min system in malignancy. Cancer Metast. Rev. 11: 291–311.

    Article  CAS  Google Scholar 

  12. Honn KV, Tang DG, Crissman JD. (1992) Platelets and cancer metastasis: A causal relationship? Cancer Metast. Rev. 11: 325–351.

    Article  CAS  Google Scholar 

  13. Callander NS, Varki N, Rao LVM. (1992) Immunohistochemical identification of tissue factor in solid tumors. Cancer 70: 1194–1201.

    Article  CAS  PubMed  Google Scholar 

  14. Costantini V, Zacharski LR, Memoli VA, Kisiel W, Kudryk BJ, Rousseau SM. (1991) Fibrinogen deposition without thrombin generation in primary human breast cancer tissue. Cancer Res. 51: 349–353.

    PubMed  CAS  Google Scholar 

  15. Sturm U, Luther T, Albrecht S, Flossel C, Grossmann H, Muller M. (1992) Immunohistological detection of tissue factor in normal and abnormal human mammary glands using monoclonal antibodies. Virchows Arch. A. Path. Anat. Histopath. 421(2): 79–86.

    Article  CAS  Google Scholar 

  16. Band V, Sager R. (1989) Distinctive traits of normal and tumor-derived human mammary epithelial cells expressed in a medium that supports long-term growth of both cell types. Proc. Natl. Acad. Sci. 86: 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  17. Band V, Zajchowski D, Kulesa V, Sager R. (1990) Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements. Proc. Natl. Acad. Sci. 87: 463–467.

    Article  CAS  PubMed  Google Scholar 

  18. Soule HD, Maloney TM, Wolman SR, et al. (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50: 6075–6086.

    PubMed  CAS  Google Scholar 

  19. Zajchowski D, Band V, Pauzie N, Tager A, Stampfer M, Sager R. (1988) Expression of growth factors and oncogenes in normal and tumor-derived human mammary epithelial cells. Cancer Res. 48: 7041–7047.

    PubMed  CAS  Google Scholar 

  20. Liang P, Pardee AB. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–970.

    Article  CAS  PubMed  Google Scholar 

  21. Sager R, Anisowicz A, Neveu M, Liang P, Sotiropoulou G. (1993) Identification by differential display of alpha 6 integrin as a candidate tumor suppressor gene. F.A.S.E.B. J. 7: 964–970.

    CAS  Google Scholar 

  22. Liang P, Averboukh L, Pardee AB. (1993) Distribution and cloning of eukaryotic mRNAs by means of differential display: Refinements and optimization. Nucleic Acids Res. 21: 3269–3275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morrissey JM, Fair DS, Edgington TS. (1988) Monoclonal antibody analysis of purified and cell-associated tissue factor. Thromb. Res. 52: 247–261.

    Article  CAS  PubMed  Google Scholar 

  24. Scarpati EM, Wen D, Broze GJ Jr, et al. (1987) Human tissue factor: cDNA sequence and chromosome localization of the gene. Biochemistry 26: 5234–5238.

    Article  CAS  PubMed  Google Scholar 

  25. Muller M, Flossel C, Haase M, et al. (1993) Cellular localization of tissue factor in human breast cancer cell lines. Virchows Arch. B. Cell. Pathol. 64: 265–269.

    Article  CAS  Google Scholar 

  26. Zou Z, Anisowicz A, Hendrix MJC, et al. (1994) Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 263: 526–529.

    Article  CAS  PubMed  Google Scholar 

  27. Ranganathan G, Blatti SP, Subramaniam M, Fass DN, Maihle NJ, Getz MJ. (1991) Cloning of murine tissue factor and regulation of gene expression by transforming growth factor type beta 1. J. Biol. Chem. 266: 496–501.

    PubMed  CAS  Google Scholar 

  28. Flossel C, Luther T, Albrecht S, Kotzsch M, Muller M. (1992) Constitutive Tissue factor expression of human breast cancer cell line MCF-7 is modulated by growth factors. Eur. J. Cancer 28A: 1999–2002.

    Article  CAS  PubMed  Google Scholar 

  29. Lockwood CJ, Nemerson Y, Krikun G, et al. (1993) Steroid-modulated stromal cell tissue factor expression: A model for the regulation of endometrial hemostasis and menstruation. J. Clin. Endocrinol. Metab. 77: 1014–1019.

    PubMed  CAS  Google Scholar 

  30. Ishii H, Horie S, Kizaki K, Kazama M. (1992) Retinoic acid counteracts both the down-regulation of thrombomodulin and the induction of tissue factor in cultured human endothelial cells exposed to tumor necrosis factor. Blood 80: 2556–2562.

    PubMed  CAS  Google Scholar 

  31. Herbert JM, Savi P, Laplace MC, et al. (1993) IL-4 and IL-3 exhibit comparable abilities to reduce pyrogen-induced expression of pro-coagulant activity in endothelial cells and monocytes. F.E.B.S. Lett. 328: 268–270.

    Article  CAS  Google Scholar 

  32. Ramani M, Ollivier V, Khechai F, et al. (1993) Interleukin-10 inhibits endotoxininduced tissue factor messenger RNA production by human monocytes. F.E.B.S. Lett. 334: 114–116.

    Article  CAS  Google Scholar 

  33. Mackman N, Fowler BJ, Edgington TS, Morrissey JH. (1990) Functional analysis of the human tissue factor promoter and induction by serum. Proc. Natl. Acad. Sci. 87: 2254–2258.

    Article  CAS  PubMed  Google Scholar 

  34. Bottles KD, Morrissey JH. (1993) Dexamethasone enhances agonist induction of tissue factor in monocytes but not in endothelial cells. Blood Coagul. Fibrinol. 4: 405–414.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Nigel Mackman for the gift of anti-TF antibodies and Dr. Chris Corless for the tissue sections and helpful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Sager, R. Differential Expression of Human Tissue Factor in Normal Mammary Epithelial Cells and in Carcinomas. Mol Med 1, 153–160 (1995). https://doi.org/10.1007/BF03401563

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401563

Navigation