Skip to main content
Log in

PET and PET/CT imaging in thyroid and adrenal diseases: an update

  • Review
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) and PET/computed tomography (PET/CT) with different tracers are imaging methods increasingly used in patients with thyroid and adrenal diseases. The aim of this article is to provide an overview based on literature data about the usefulness of PET imaging in this setting. PET and PET/CT with different tracers have been used in patients with thyroid diseases including differentiated thyroid carcinoma, medullary thyroid carcinoma, and poorly differentiated and anaplastic thyroid carcinoma. The usefulness of 18F-FDG-PET and PET/CT in assessing indeterminate thyroid nodules at fine needle aspiration biopsy and the clinical relevance of thyroid incidental 18F-FDG uptake has also been evaluated. currently, great interest is being shown in a variety of PET tracers that target specific characteristics of adrenal gland function, allowing a more accurate characterization of adrenal masses and staging of adrenal tumors. Since PET/CT using different tracers is an expensive diagnostic tool which necessitates ionizing radiation exposure, cost-effectiveness studies are needed in order to define the appropriate use of this diagnostic method in various endocrine disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treglia G, Cason E, Fagioli G, 2010 Recent applications of nuclear medicine in diagnostics (first part). Ital J Med 4: 84–91.

    Article  Google Scholar 

  2. Giovanella L, 2012 Positron emission tomography/computed tomography in patients treated for differentiated thyroid carcinomas. Expert Rev Endocrinol Metab 7: 35–43.

    Article  CAS  Google Scholar 

  3. Chacko AM, Divgi CR, 2011 Radiopharmaceutical chemistry with iodine-124: a non-standard radiohalogen for positron emission tomography. Med Chem 7: 395–412.

    Article  CAS  PubMed  Google Scholar 

  4. Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY, 2008 6-L-18F-fluorodihy-droxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 49: 573–586.

    Article  CAS  PubMed  Google Scholar 

  5. Oberg K, 2012 Gallium-68 somatostatin receptor PET/CT: Is it time to replace (111)Indium DTPA octreotide for patients with neuroendocrine tumors? Endocrine 42: 3–4.

    Article  CAS  PubMed  Google Scholar 

  6. Eriksson B, Orlefors H, Oberg K, Sundin A, Bergström M, Långström B, 2005 Developments in PET for the detection of endocrine tumours. Best Pract Res Clin Endocrinol Metab 19: 311–324.

    Article  CAS  PubMed  Google Scholar 

  7. Abraham T, Schöder H, 2011 Thyroid cancer—indications and opportunities for positron emission tomography/computed tomography imaging. Semin Nucl Med 41: 121–138.

    Article  PubMed  Google Scholar 

  8. American Thyroid Association (ATA) Guidelines Task-force on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM, Haugen BR, et al, 2009 Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19: 1167–1214.

    Article  Google Scholar 

  9. Dong MJ, Liu ZF, Zhao K, et al, 2009 Value of 18F-FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun 30: 639–650.

    Article  PubMed  Google Scholar 

  10. Giovanella L, Ceriani L, De Palma D, Suriano S, Castellani M, Verburg FA 2012 Relationship between serum thyroglobulin and 18FDG-PET/CT in 131I-negative differentiated thyroid carcinomas. Head Neck 34: 626–631.

    Article  PubMed  Google Scholar 

  11. Ma C, Xie J, Lou Y, Gao Y, Zuo S, Wang X 2010 The role of TSH for 18F-FDG-PET in the diagnosis of recurrence and metastases of differentiated thyroid carcinoma with elevated thyroglobulin and negative scan: a meta-analysis. Eur J Endocrinol 163: 177–183.

    Article  CAS  PubMed  Google Scholar 

  12. Robbins RJ, Wan Q, Grewal RK, et al, 2006 Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 91: 498–505.

    Article  CAS  PubMed  Google Scholar 

  13. Freudenberg LS, Jentzen W, Stahl A, Bockisch A, Rosenbaum-Krumme SJ, 2011 Clinical applications of 124I-PET/CT in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 38: Suppl 1: 48–56.

    Article  Google Scholar 

  14. Grabellus F, Nagarajah J, Bockisch A, Schmid KW, Sheu SY, 2012 Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma. Clin Nucl Med 37: 121–127.

    Article  PubMed  Google Scholar 

  15. Treglia G, Annunziata S, Muoio B, Salvatori M, Ceriani L, Giovanella L, 2013 The role of fluorine-18-fluorode-oxyglucose positron emission tomography in aggressive histological subtypes of thyroid cancer: an overview. Int J Endocrinol 2013: 856189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. American Thyroid Association Guidelines Task Force, Kloos RT, Eng C, Evans DB, et al, 2009 Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19: 565–612.

    Article  Google Scholar 

  17. Treglia G, Rufini V, Salvatori M, Giordano A, Giovanella L, 2012 PET Imaging in Recurrent Medullary Thyroid Carcinoma. Int J Mol Imaging 2012: 324686.

    PubMed  PubMed Central  Google Scholar 

  18. Rufini V, Treglia G, Perotti G, Leccisotti L, Calcagni ML, Rubello D, 2008 Role of PET in medullary thyroid carcinoma. Minerva Endocrinol 33: 67–73.

    PubMed  CAS  Google Scholar 

  19. Treglia G, Villani MF, Giordano A, Rufini V, 2012 Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 fluorodeoxyglucose positron emission tomography: a meta-analysis. Endocrine 42: 535–545.

    Article  CAS  PubMed  Google Scholar 

  20. Treglia G, Castaldi P, Villani MF, et al, 2012 Comparison of 18F-DOPA, 18F-FDG and 68Ga-somatostatin analogue PET/CT in patients with recurrent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 39: 569–580.

    Article  CAS  PubMed  Google Scholar 

  21. Treglia G, Cocciolillo F, Di Nardo F, et al, 2012 Detection Rate of Recurrent Medullary Thyroid Carcinoma Using Fluorine-18 Dihydroxyphenylalanine Positron Emission Tomography: A Meta-analysis. Acad Radiol 19: 1290–1299.

    Article  PubMed  Google Scholar 

  22. Giovanella L, Suriano S, Maffioli M, Ceriani L, 2011 18FDG-positron emission tomography/computed tomography (PET/CT) scanning in thyroid nodules with nondiagnostic cytology. Clin Endocrinol 74: 644–648.

    Article  Google Scholar 

  23. Vriens D, de Wilt JH, van der Wilt GJ, Netea-Maier RT, Oyen WJ, de Geus-Oei LF, 2011 The role of [(18) F]-2-fluoro-2-deoxy-d-glucose-positron emission tomography in thyroid nodules with indeterminate fine-needle aspiration biopsy: Systematic review and meta-analysis of the literature. Cancer 117: 4582–4594.

    Article  PubMed  Google Scholar 

  24. Deandreis D, Al Ghuzlan A, Auperin A, et al, 2012 Is (18) F-fluorodeoxyglucose-PET/CT useful for the presurgical characterization of thyroid nodules with indeterminate fine needle aspiration cytology? Thyroid 22: 165–172.

    Article  CAS  PubMed  Google Scholar 

  25. Bertagna F, Treglia G, Piccardo A, Giubbini R, 2012 Diagnostic and Clinical Significance of F-18-FDG-PET/CT Thyroid Incidentalomas. J Clin Endocrinol Metab 97: 3866–3875.

    Article  CAS  PubMed  Google Scholar 

  26. Treglia G, Giovanella L, Bertagna F, Di Franco D, Salvatori M, 2013 Prevalence and risk of malignancy of thyroid incidentalomas detected by (18)f-fluorodeoxyglucose positron-emission tomography. Thyroid 23: 124–126.

    Article  CAS  PubMed  Google Scholar 

  27. Boland GWL, Dwamena B, Sangwarya MJ, et al, 2011 Characterization of adrenal masses by using FDG PET: A systematic review and meta-analysis of diagnostic test performance. Radiology 269: 117–126.

    Article  Google Scholar 

  28. Deandreis D, Leboulleux S, Caramella C, Schlumberger M, Baudin E 2011 FDG PET in the management of patients with adrenal masses and adrenocortical carcinoma. Horm Cancer 2: 354–362.

    Article  PubMed  Google Scholar 

  29. Hahner S, Sundin A, 2011 Metomidate-based imaging of adrenal masses. Horm Cancer 2: 348–353.

    Article  CAS  PubMed  Google Scholar 

  30. Rufini V, Calcagni ML, Baum RP, 2006 Imaging of neuroendocrine tumors. Semin Nucl Med 36: 228–247.

    Article  PubMed  Google Scholar 

  31. Jacobson AF, Deng H, Lombard J, et al, 2010 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab 95: 2596–2606.

    Article  CAS  PubMed  Google Scholar 

  32. Pacak K, Eisenhofer G, Goldstein DS, 2004 Functional imaging of endocrine tumors: role of positron emission tomography. Endocr Rev 25: 568–580.

    Article  PubMed  Google Scholar 

  33. Treglia G, Cocciolillo F, de Waure C, et al, 2012 Diagnostic performance of 18F-dihydroxyphenylalanine positron emission tomography in patients with paraganglioma: a meta-analysis. Eur J Nucl Med Mol Imaging 39: 1144–1153.

    Article  PubMed  Google Scholar 

  34. Rufini V, Treglia G, Castaldi P, et al, 2011 Comparison of 123I-MIBG SPECT-CT and 18F-DOPA PET-CT in the evaluation of patients with known or suspected recurrent paraganglioma. Nucl Med Commun 32: 575–582.

    Article  PubMed  Google Scholar 

  35. Timmers HJ, Kozupa A, Chen CC, et al, 2007 Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J Clin Oncol 25: 2262–2269.

    Article  PubMed  Google Scholar 

  36. Naji M, AL-Nahhas A, 2012 68Ga-labelled peptides in the management of neuroectodermal tumours. Eur J Nucl Med Mol Imaging 39: Suppl 1: S61–67.

    Article  CAS  PubMed  Google Scholar 

  37. Taïeb D, Timmers HJ, Hindié E, et al, 2012 EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 39: 1977–1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Timmers HJ, Chen CC, Carrasquillo JA, et al, 2009 Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 94: 4757–4767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Treglia MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treglia, G., Giovanella, L. & Rufini, V. PET and PET/CT imaging in thyroid and adrenal diseases: an update. Hormones 12, 327–333 (2013). https://doi.org/10.1007/BF03401299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401299

Key words

Navigation