Development of Microporous Scaffolds through Slip Casting of Solution Combustion Derived Nano Hydroxyapatite

Abstract

HAp powder with crystallite and particle sizes in the nanorange was prepared by a solution combustion method using glycine as fuel. The powders were characterized for phase and functional group, crystallite size, particle size and agglomerate size, morphology, surface area and sericin protein adhesion. The powder had a crystallite size in the range of 10–20 nm, a particle size in the range of 100–200 nm and a surface area of 10–16 m2/g. The nanosized HAp powder was mixed with de-ionized water to prepare a slurry with solid loading in the range of 20–40 vol.-%, which was homogenized by ball milling for 16–20 h and then cast in to plaster moulds. The slip cast samples sintered at 1250°C for 1 h were found ta have a bulk density in the range of 50–78%, an apparent porosity of 13–43% and a micropore size in the range of 0.5–5.0 µm. The three-point flexural strength and compressive strength values were correlated to the porosity of sintered HAp samples.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Hench, L.L.: Bioceramics from concept to clinic. J. Am. Ceram. Soc. 74 (1991) [7] 1487–1510

    Article  CAS  Google Scholar 

  2. [2]

    Lobo, S.E., Arinzeh, T.L.: Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Open access Materials 3 (2010) [2] 815–826

    CAS  Google Scholar 

  3. [3]

    Bignon, A., Choreteau, J., Chevalier, J., Fantozi, G., Carret, J.-P., Chavassieux, P. et al.: Effect of micro and macro porosity of bone substitutes on their mechanical properties and cellular response. J. Mater. Sci. Mater. Med. 14 (2003) [12] 1089–97

    Article  CAS  Google Scholar 

  4. [4]

    Hing, K.A., Annaz, B., Saeed, S., Revell, P.A., Buckland, T.: Microporosity enhances bioactivity of synthetic bone graft substitutes. J. Mater. Sci. Mater. Med. 16 (2005) [5] 467–75

    Article  CAS  Google Scholar 

  5. [5]

    Woodard, J.R., Hilldore, A.J., Lan, S.K., Park, C.J., Morgan, A.W., Eurell J.A.C. et. al.: The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi scale porosity. Biomaterials 28 (2007) 45–54

    Article  CAS  Google Scholar 

  6. [6]

    Christenson, E.M., Anseth, K.S., van den Beucken, J.J.J.P., Chan, C.K., Ercan, B., Jansen, J.A., Laurencin, C.T., Wan-Ju Li, Murugan, R., Nair, L.S., Ramakrishna, S., Tuan, R.S., Webster, T.J., Mikos, A.G.: Nanobiomaterial applications in orthopedics. J. Orthopaedic Res. 25 (2007) [1] 11–22

    Article  CAS  Google Scholar 

  7. [7]

    Ramachandra Rao, R., Roopa, H.N., Kannan, T.S.: Solid state synthesis and thermal stability of HAp and HAp-β-TCP composite ceramic powder. J. Mater. Sci. Mater. Med. 8 (1997) [8] 511–518

    Article  CAS  Google Scholar 

  8. [8]

    Nayak, A.K.: Hydroxyapatite synthesis methodologies: An overview. Int. J. Chem. Tech. Res. 2 (2010) [2] 903–907

    Google Scholar 

  9. [9]

    Ferraz, M.P., Monteiro F.J., Manuel, C.M.: Hydroxyapatite nanoparticles: A review of preparation methodologies. J. Appl. Biomater. and Biomech. 2 (2004) 74–80

    CAS  Google Scholar 

  10. [10]

    Cuneyt Tas, A.: Combustion synthesis of calcium phosphate bioceramic powders. J. Eur. Ceram. Soc. 20 (2000) [14–15] 2389–2394

    Google Scholar 

  11. [11]

    Han, Y., Li, S., Wang, X., Chen, X.: Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method. Mater. Res. Bull. 39 (2004) [1] 25–32

    Article  CAS  Google Scholar 

  12. [12]

    Pratihar, S.K., Garg, M., Mehra, S., Bhattacharya, S.: Phase evolution and sintering kinetics of hydroxyapatite synthesized by solution combustion technique. J. Mater. Sci. Mater. Med. 17 (2006) [6] 501–507

    Article  CAS  Google Scholar 

  13. [13]

    Sasikumar, S., Vijayaraghavan, R.: Synthesis and characterization of bioceramic calcium phosphates by rapid combustion synthesis. J. Mater. Sci. Technol. 26 (2010) [12] 114–118

    Article  Google Scholar 

  14. [14]

    Ghosh, S.K., Roy, S.K., Kundu, B., Datta, S., Basu, D.: Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions. Mater. Sci. and Eng. B, 176 (2011) [1] 14–21

    Article  CAS  Google Scholar 

  15. [15]

    Ramachandra Rao R., Kannan, T.S.: Dispersion and slip casting of hydroxyapatite. J. Am. Ceram. Soc. 84 (2001) [8] 1710–1716

    Google Scholar 

  16. [16]

    Ramachandra Rao, R., Mariappan L., Roopa, H.N.: Fabrication of micro-featured shapes of alumina ceramics. Procedia Mater. Sci. 5 (2014) 2595–2604

    Article  CAS  Google Scholar 

  17. [17]

    Began, H., Chanda, A., Kundu, B.: Development of nano-grained calcium hydroxyapatite using slip casting technique. Int. J. Scientific and Eng. Res. 21 (2001) [3] 1–7

    Google Scholar 

  18. [18]

    Sepulveda, P., Ortega, F.S., Innocentini M.D.M., Pandolfelli, V.C.: Properties of highly porous hydroxyapatite obtained by the gel casting of foams. J. Am. Ceram. Soc. 83 (2000) [12] 3021–3024

    Article  CAS  Google Scholar 

  19. [19]

    Lee, E., Koh, Y., Yoon, B., Kim, H., Kim, H.: Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Mater. Letters 61 (2007) 2270–2273

    Article  CAS  Google Scholar 

  20. [20]

    Arita, I.H., Wilkinson D.S., Castazo, V.M.: Synthesis and processing of hydroxyapatite ceramic tapes with controlled porosity. J. Mater. Sci. Mater. Med. 6 (1995) [1] 19–23

    Article  CAS  Google Scholar 

  21. [21]

    Bose, S., Vahabzadeh, S., Bandyopadhyay, A.: Bone tissue engineering using 3D printing. Materials today 16 (2013) [12] 496–504

    Article  CAS  Google Scholar 

  22. [22]

    Hutmacher, D.W., Sittinger M., Risbud, M.V.: Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems. Trends in Biotechnology 22 (2004) [7] 354–362

    Article  CAS  Google Scholar 

  23. [23]

    Ramachandra Rao, R.: Current Trends in Processing and Shaping of Bioceramics. E-Book Chapter in: Current Trends on Glass and Ceramic Materials, Eds. Sooraj Hussain, N., da Silva Santos, J.D., University of Porto, Portugal, Bentham Science Publishers, The Netherlands (2013) 3–48, ISBN: 978-1-60805-514-2, eISBN: 978-1-60805-452-7

    Google Scholar 

  24. [24]

    Thangamani, N., Chinnakali K., Gnanam, F.D.: The effect of powder processing on densification, microstructure and mechanical properties of hydroxyapatite. Ceram. Inter. 28 (2002) [4] 355–362

    Article  CAS  Google Scholar 

  25. [25]

    Tian, T., Jiang, D., Zhang J., Lin, Q.: Aqueous tape casting process for hydroxyapatite. J. Eur. Ceram. Soc. 27 (2007) 2671–2677.

    Article  CAS  Google Scholar 

  26. [26]

    Padilla, S., Vallet-Regí, M., Ginebra M.P., Gil, F.J.: Processing and mechanical properties of hydroxyapatite pieces obtained by the gelcasting method. J. Eur. Ceram. Soc. 25 (2005) 375–383

    Article  CAS  Google Scholar 

  27. [27]

    Kikuchi, M.: Effect of test circumstances on compressive strength of porous calcium phosphate ceramics for establishment of standard measurement condition. Bioceramics Develop. and Appl. 1 (2011) 1–3, doi: 10.4303/bda/D101201

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr. R. R. Rao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rao, R.R., Roopa, H.N. & Mariappan, L. Development of Microporous Scaffolds through Slip Casting of Solution Combustion Derived Nano Hydroxyapatite. Interceram. - Int. Ceram. Rev. 65, 100–105 (2016). https://doi.org/10.1007/BF03401159

Download citation

Keywords

  • nanohydroxyapatite
  • solution combustion synthesis
  • slip casting
  • microporous scaffolds