Skip to main content
Log in

Effect of Thermal-cured Hydraulic Cement Admixtures on the Mechanical Properties of Concrete

  • Building Materials
  • Published:
Interceram - International Ceramic Review

Abstract

In the cement industry, researchers have worked on blending cement with supplementary cementitious materials (SCMs) to enhance the mechanical properties of concrete. For technical and environmental reasons, previous studies have recommended that concretes be designed with less ordinary Portland cement (OPC). Other researchers encourage the use of thermal treatments at the precast stage. In this work, high volumes of various SCMs other than OPC were used to prepare five cement formulations, including a control sample. Initial tests of three hydraulic binders were performed to check their suitability before mixing cement samples. The samples were treated in water, air, hot water, and hot air curing (HAC) conditions after demoulding. The study showed that a combination of rice husk ash (RHA) and fly ash (FA) with OPC in the binder matrix, cured under HAC conditions, gave the best compressive and flexural strength results with the lowest water absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. US Geological Survey: Cement statistics and information, in: Mineral Commodity Summaries. US Geological Survey, US Department of the interior, Reston, (2014) 44–46 p. Available from: http://minerals.usgs.gov/minerals/pubs/commodity/cement/index.html (accessed 09.03.15)

    Google Scholar 

  2. Aldea, C.M., Young, F., Wang, K., Shah, S.P.: Effects of curing conditions on properties of concrete using slag replacement. Cem. Concr. Res. 30 (2000) [3] 465–472

    Article  CAS  Google Scholar 

  3. Bagel, L.: Strength and pore structure of ternary blended cement mortars containing blast furnace slag and silica fume. Cem. Concr. Res. 28 (1998) [7] 1011–1020

    Article  CAS  Google Scholar 

  4. Dongxue, L., Xinhua, F., Xuequan, W., Mingshu, T.: Durability study of steel slag cement. Cem. Concr. Res. 27 (1997) [7] 983–987

    Article  CAS  Google Scholar 

  5. Escalante-Garcia, J.I., Sharp, J.H.: The microstructure and mechanical properties of blended cements hydrated at various temperatures. Cem. Concr. Res. 31 (2001) [5] 695–702

    Article  CAS  Google Scholar 

  6. Agarwal, S.K.: Pozzolanic activity of various siliceous materials. Cem. Concr. Res. 36 (2006) 1735–1739

    Article  CAS  Google Scholar 

  7. Varga, I., Castro, J., Bentz, D., Weiss, J.: Application of internal curing for mixtures containing high volumes of fly ash. Cem. Concr. Comp. 34 (2012) 1001–1008

    Article  CAS  Google Scholar 

  8. Boubitsas, D.: Replacement of cement by limestone filler or ground granulated blast furnace slag: the effect of chloride penetration in cement mortars. Nord. Concr. Res. 45 (2001) [36] 65–77

    Google Scholar 

  9. Siddique, R.: Properties of self-compacting concrete containing Class F fly ash. Mater. Design. 32 (2001) 1501–1507

    Article  CAS  Google Scholar 

  10. Sajedi, F., Abdul Razak, H.: The effect of chemical activators on early strength of ordinary Portland cement-slag mortars. Constr. Build. Mater. 24 (2010a) 1944–1951

    Article  Google Scholar 

  11. Ezziane, K., Bougara, A., Kadri, A., Khelafi, H., Kadri, E.: Compressive strength of mortar containing natural pozzolan under various curing temperature. Cem. Concr. Comp. 29 (2007) 587–593

    Article  CAS  Google Scholar 

  12. Kim, J.K., Han, S.H., Chul, S.Y.: Effect of temperature and aging on the mechanical properties of concrete. Cem. Concr. Res. 32 (2002) 1087–1094

    Article  CAS  Google Scholar 

  13. Stepehen, O.E.: Role of heat curing in concrete durability. Ph.D. Thesis, University of Toronto, Toronto, Canada (2004)

    Google Scholar 

  14. Herrera, A.D., Juarez, C.A., Valdez, P., Bentz, D.P.: Evaluation of sustainable high volume fly ash concrete. Cem. Concr. Comp. 33 (2011) 39–45

    Article  CAS  Google Scholar 

  15. Hasparyk, N.P., Monteiro, P.J.M., Carasek, H.: Effect of silica fume and rice husk ash on alkali-silika reaction. ACI Mater. 97 (2000) [4] 486–492

    CAS  Google Scholar 

  16. Sajedi, F., Abdul Razak, H.: Effects of thermal and mechanical activation methods on compressive strength of ordinary Portland cement-slag mortar. Mater. Design. 32 (2011b) [2] 984–995

    Article  CAS  Google Scholar 

  17. ASTM C109/C109M: Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). Amer. Soc. for Testing and Materials, PA (2008)

  18. Carino, N.J.: The maturity method: theory and application. ASTM J. Cem. Concr. Aggregates 6 (1984) 61–73

    Article  Google Scholar 

  19. Sivakumar, G., Mohanraj, K., Barathan, S.: Dielectric study on fly ash blended cement. E-J. Chem. 6 (2009) [1] 231–236

    Article  CAS  Google Scholar 

  20. Halaweh, M.A.: Effect of alkalis and sulfates on Portland cement systems. Ph.D. Thesis, University of South Florida, FL, USA (2004)

    Google Scholar 

  21. ASTM C128: Standard test method for relative density (specific gravity) and absorption of fine aggregate. Amer. Soc. for Testing and Materials, PA (2015)

  22. Bakhshi, M., Mobasher, B.: Experimental observations of early-age drying of Portland cement paste under low-pressure conditions. Cem. Concr. Comp. 33 (2011) [4] 474–484

    Article  CAS  Google Scholar 

  23. ISO 9277: Determination of the specific surface area of solids by gas adsorption — BET method. Technical Committee ISO/TC 24, Geneva (2010)

  24. Ben, H.M., Lothenbach, B., Le Saout, G., Winnefeld, F.: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-Part 1: Effect of MgO. Cem. Concr. Res. 41 (2011) 955–963

    Article  CAS  Google Scholar 

  25. Kocaba, V.: Development and evaluation of methods to follow microstructural development of cementitious systems including slags. Ph.D. Thesis, École Politechnique Fedérale de Lausanne Materials Department, Lausanne, Switzerland (2009)

    Google Scholar 

  26. ASTM D6683: Standard test method for measuring bulk density values of powders and other bulk solids as function of compressive stress. Amer. Soc. for Testing and Materials, PA (2014)

  27. Bentz, D.P., Garboczi, E.J., Haecker, C.J., Jensen, O.M.: Effects of cement particle size distribution on performance properties of cement-based materials. Cem. Concr. Res. 29 (1999) [10] 1663–1671

    Article  CAS  Google Scholar 

  28. Higginson, E.C.: The effect of cement fineness on concrete, in: Verbeck, G.J. (Eds.), Fineness of cement, ASTM STP 473. Amer. Soc. for Testing and Materials, Philadelphia, PA, USA (1970) 71–81

    Chapter  Google Scholar 

  29. Nazari, A., Bagheri, A., Riahi, S.: Properties of geopolymer with seeded fly ash and rice husk bark ash. Mater. Sci. Eng. A528 (2011) [24] 7395–7401

    Article  CAS  Google Scholar 

  30. ASTM C430: Standard test method for fitness of hydraulic cement by the 5-mm (no. 325) sieve. Amer. Soc. for Testing and Materials, PA (2003)

  31. ASTM C494: Standard specification for chemical admixtures for concrete. Amer. Soc. for Testing and Materials, PA, USA (2011)

  32. Gardner, N.J.: The Effect of superplasticizers and fly ash on formwork pressures, third ed. Forming Economical Concrete Buildings, Portland Cement Association, Skokie, IL, USA (1982) 1–12

    Google Scholar 

  33. ASTM D1429: Standard test method for specific gravity of water and brine. Amer. Soc. for Testing and Materials, PA, USA (2013)

  34. Jumate, E., Manea, D.L.: X-Ray diffraction study of hydration processes in the Portland cement. Civil. Eng. Install. 14 (2011) 79–86

    Google Scholar 

  35. Stutzman, P.: Scanning electron microscopy imaging of hydraulic cement microstructure. Cem. Concr. Comp. 26 (2004) [8] 957–966

    Article  CAS  Google Scholar 

  36. Pavia, D.L., Lampman, G.M., Kriz, G.S., Vyvyan, J.R.: Introduction to Spectroscopy (4 ed.). Brooks/Cole, Cengage Learning, Belmont, CA, USA (2009)

    Google Scholar 

  37. Thiruppathi, K., Barathan, S., Anandhan, N., Sivakumar, G.: Effect of fly ash and water in hydrated Srpc-A Ftir study. Appl. Phys. Res. 1 (2009) [2] 59–67

    Article  CAS  Google Scholar 

  38. Meiszterics, A., Sinko, K.: Sol-Gel Derived Calcium Silicate Ceramics. Colloids. Surf. A319 (2008) [1–3] 143–148

    Article  CAS  Google Scholar 

  39. Pandey, S.P., Sharma, R.L.: The influence of mineral additives on the strength and porosity of OPC mortar. Cem. Concr. Res. 30 (2000) [1] 19–23

    Article  CAS  Google Scholar 

  40. Khan, M.I.: Iso-responses for strength, permeability and porosity of high performance mortar. Build. Environ. 38 (2003) [8] 1051–1056

    Article  Google Scholar 

  41. Malami, C.H., Kaloidas, V.: Carbonation and porosity of mortar specimens with pozzolanic and hydraulic cement admixtures. Cem. Concr. Res. 24 (2003) [8] 1444–1454

    Article  Google Scholar 

  42. Chindaprasirt, P., Rukzon, S.: Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr. Build. Mater. 22 (2008) [8] 1601–1606

    Article  Google Scholar 

  43. Ahmari, S., Ren, X., Toufigh, V., Zhang, L.: Production of geopolymeric binder from blended waste concrete powder and fly ash. Constr. Build. Mater. 35 (2012) 718–729

    Article  Google Scholar 

  44. Castaldelli, V.N., Akasaki, J.L., Melges, J.L.P., Tashima, M.M., Soriano, L., Borrachero, M., Monzo, J., Paya, J.: Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials. Mater. 6 (2013) 3108–3127

    Article  CAS  Google Scholar 

  45. Karim, M.R., Hossain, M.M., Khan, M.N.M., Zain, M.F.M., Jamil, M., Lai, F.C.: On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement. Mater. 7 (2014) 7809–7827

    Article  Google Scholar 

  46. Li, X., Wang, Z., Jiao, Z.: Influence of curing on the strength development of calcium-containing geopolymer mortar. Mater. 6 (2013) 5069–5076

    Article  CAS  Google Scholar 

  47. ASTM C465: Standard specification for processing additions for use in the manufacture of hydraulic cements, in: Annual Book of ASTM Standards (Vol. 04.01). Amer. Soc. for Testing and Materials, PA, USA (1998)

  48. Beitzel, H.: Effect of the mixing time on the quality of the mixing. Precast. Concrete. 12 (1981) [9] 403–408

    Google Scholar 

  49. Vidick, B., Schlumberger, D.: Critical mixing parameters for good control of cement slurry quality. J. Pet. Technol. 42 (1990) [7] 924–928

    Article  CAS  Google Scholar 

  50. Khaleel, O.R., Abdul Razak, H.: Mix design method for self compacting metakaolin concrete with different properties of coarse aggregate. Mater. Design. 53 (2014) 691–700

    Article  CAS  Google Scholar 

  51. Thankachan, V., Philip, N.: High performance concrete-A state of the art study. Trans. Eng. Sci. 2 (2014) [6] 60–65

    Google Scholar 

  52. Sua-Iam, G., Makul, N.: Self-compacting concrete incorporating various ratios of husk ash in Portland cement. CMU. J. Nat. Sci. 12 (2013) [2] 111

    Google Scholar 

  53. Sajedi, F., Abdul Razak, H.: Comparison of different methods for activation of ordinary Portland cement-slag mortars. Constr. Build. Mater. 25 (2011c) [1] 30–38

    Article  Google Scholar 

  54. BS EN 12390-3: Testing for hardened concrete, compressive strength of test specimens. British Standard European Norm, London, UK (2009)

  55. ASTM C293/C293M: Standard Test Method for flexural strength of concrete (using simple beam with center-point loading). Amer. Soc. for Testing and Materials, PA, USA (2010)

  56. Zhang, S.P., Zong, L.: Evaluation of relationship between water absorption and durability of concrete materials. Adv. Mater. Sci. Eng. 2014 (2014) 8

    Google Scholar 

  57. ASTM C1585: Standard Test Method for measurement of rate of absorption of water by hydraulic-cement concretes. Amer. Soc. for Testing and Materials, PA, USA (2010)

  58. RILEM-TC/14-CPC: CPC 11.3 Absorption of water by immersion under vacuum. Mater. Struct. 17 (1984) [101] 391–394

    Google Scholar 

  59. Anthiohos, S.K., Papadakis, V.G., Tsimas, S.: Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness. Cem. Concr. Res. 61 (2014) [62] 20–27

    Article  CAS  Google Scholar 

  60. Schmidt, M., Fehling, E., Glotzbach, C., Fröhlich, S., Piotrowski, S.: Ultra-high performance concrete and nanotechnology in construction. Proceedings of Hipermat, 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel University, Kassel, Denmark (2010)

    Google Scholar 

  61. Peter, L., Jose, M.C., Luiz, O.L., Gaspar, C.P.: Using converter dust to produce low cost cementitious composites by in situ carbon nanotube and nanofiber synthesis. Mater. 4 (2011) 575–584

    Article  CAS  Google Scholar 

  62. Ranjbar, M.M., Madandoust, R., Mousavi, S.Y., Yosefi, S.: Effects of natural zeolite on the fresh and hardened properties of self-compacted concrete. Constr. Build. Mater. 47 (2013) 806–813

    Article  Google Scholar 

  63. CEB-FIP: Diagnosis and assessment of concrete structures — state of the art report. CEB. Bull. 192 (1989) 83–85

    Google Scholar 

  64. CEB-FIP: Diagnosis and assessment of concrete structures — state of the art report. CEB. Bull. 192 (1989) 83–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Aljerf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljerf, L. Effect of Thermal-cured Hydraulic Cement Admixtures on the Mechanical Properties of Concrete. Interceram. - Int. Ceram. Rev. 64, 346–356 (2015). https://doi.org/10.1007/BF03401142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401142

Keywords

Navigation