Skip to main content
Log in

Large-Scale Preparation of Carbon Nanotubes via Catalytic Pyrolysis of Phenolic Resin at Low Temperature

  • Review Papers
  • Published:
Interceram - International Ceramic Review

Abstract

Carbon nanotubes (CNTs) were prepared through catalytic pyrolysis of phenol resin at 600°C under Ar atmosphere using ferric nitrate as the catalyst precursor. The structure and morphology of pyrolyzed resin were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the optimum growth temperature of the CNTs is 600°C, and other heating temperatures lower or higher than 600°C are not suitable for large-scale preparation of CNTs. Moreover, the ferric nitrate experienced the following phase transformation: Fe3O4 at 400°C, catalytically active Fe at 600°C and catalytically inactive (Fe, C) carbide at 800 and 1000°C. Based on the SEM and TEM results, a four-step mode of Vapour-solid-solid (VSS) and tip growth mechanism was revealed for the formation of CNTs from catalytic pyrolysis of phenol resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon Nanotubes — The Route Toward Applications. Science 297 (2002) [5582] 787–792

    Article  Google Scholar 

  2. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354 (1991) [6348] 56–58

    Article  CAS  Google Scholar 

  3. Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E.: Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters 243 (1995) [1–2] 49–54

    Article  CAS  Google Scholar 

  4. Tibbetts, G.G.: Why are carbon filaments tubular? Journal of Crystal Growth 66 (1984) [3] 632–638

    Article  CAS  Google Scholar 

  5. Ramakrishnan, S., Jelmy, E.J., Dhakshnamoorthy, M., Rangarajan, M., Kothurkar, N.: Synthesis of Carbon Nanotubes from Ethanol Using RF-CCVD and Fe-Mo Catalyst. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 44 (2014) [6] 873–876

    Article  CAS  Google Scholar 

  6. Tian, Y., Hu, Z., Yang, Y., Chen, X., Ji, W., Chen, Y.: Thermal analysis-mass spectroscopy coupling as a powerful technique to study the growth of carbon nanotubes from benzene. Chemical Physics Letters 388 (2004) [4–6] 259–262

    Article  CAS  Google Scholar 

  7. Li, Y., Li, X.K., Liu, L.: The production of CNTs by catalytic decomposition of different source gases. New Carbon Materials 19 (2004) [4] 298–302

    CAS  Google Scholar 

  8. Shaikjee, A., Coville, N.J.: The role of the hydrocarbon source on the growth of carbon materials. Carbon 50 (2012) [10] 3376–3398

    Article  CAS  Google Scholar 

  9. Simate, G., et al.: The production of carbon nanotubes from carbon dioxide: Challenges and opportunities. Journal of Natural Gas Chemistry 19 (2010) [5] 453–460

    Article  CAS  Google Scholar 

  10. Liu, L., Fan, S.: Isotope labeling of carbon nanotubes and formation of 12C–13C nanotube junctions. Journal of the American Chemical Society 123 (2001) [46] 11502–11503

    Article  CAS  Google Scholar 

  11. Sinnott, S.B., Andrews, R., Qian, D., Rao, A.M., Mao, Z., Dickey, E.C., et al.: Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letters 315 (1999) [1–2] 25–30

    Article  CAS  Google Scholar 

  12. José-Yacamán, M., Miki-Yoshida, M., Rendón, L., Santiesteban, J.G.: Catalytic growth of carbon microtubules with fullerene structure. Applied Physics Letters 62 (1993) [2] 202–204

    Article  Google Scholar 

  13. Zhu, B., Wei, G., Li, X., Ma, Z., Wei, Y.: Preparation and growth mechanism of carbon nanotubes via catalytic pyrolysis of phenol resin. Materials Research Innovations 18 (2013) [4] 267–274

    Article  CAS  Google Scholar 

  14. Hernadi, K., Fonseca, A., Nagy, J.B., Siska, A., Kiricsi, I.: Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Applied Catalysis A: General 199 (2000) [2] 245–255

    Article  CAS  Google Scholar 

  15. Klinke, C., Bonard, J.-M., Kern, K.: Comparative study of the catalytic growth of patterned carbon nanotube films. Surface Science 492 (2001) [1–2] 195–201

    Article  CAS  Google Scholar 

  16. Kong, J., Cassell, A.M., Dai, H.: Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters 292 (1998) [4–6] 567–574

    Article  CAS  Google Scholar 

  17. Stamatin, I., Morozan, A., Dumitru, A., Ciupina, V., Prodan, G., Niewolski, J., et al.: The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins. Physica E: Low-dimensional Systems and Nanostructures 37 (2007) [1–2] 44–48

    Article  CAS  Google Scholar 

  18. Quan, C., Li, A., Gao, N.: Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil. Journal of Hazardous Materials 179 (2010) [1–3] 911–917

    Article  CAS  Google Scholar 

  19. Hernadi, K., Fonseca, A., Nagy, J.B., Bernaerts, D., Lucas, A.A.: Fe-catalyzed carbon nanotube formation. Carbon 34 (1996) [10] 1249–1257

    Article  CAS  Google Scholar 

  20. Herreyre, S., Gadelle, P., Moral, P., Millet, J.M.M.: Study by mössbauer spectroscopy and magnetization measurement of the evolution of iron catalysts used in the disproportionation of CO. Journal of Physics and Chemistry of Solids 58 (1997) [10] 1539–1545

    Article  CAS  Google Scholar 

  21. Nobuyoshi Y., Masatoshi, Y., Takayuki, A., Seiji, A., Yoshikazu, N.: Quantitative Analysis of the Magnetic Properties of Metal-Capped Carbon Nanotube Probe. Japanese Journal of Applied Physics 41 (2002) [75] 5013–5016

    Google Scholar 

  22. Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., et al.: In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano letters 7 (2007) [3] 602–608

    Article  CAS  Google Scholar 

  23. Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H., Homma, Y.: Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano letters 8 (2008) [7] 2082–2086

    Article  CAS  Google Scholar 

  24. Yoshida, H., Shimizu, T., Uchiyama, T., Kohno, H., Homma, Y., Takeda, S.: Atomic-scale analysis on the role of molybdenum in iron-catalyzed carbon nanotube growth. Nano letters 9 (2009) [11] 3810–3815

    Article  CAS  Google Scholar 

  25. Baker, R.T.K.: Catalytic growth of carbon filaments. Carbon 27 (1989) [3] 315–323

    Article  CAS  Google Scholar 

  26. Lin, M., Ying Tan, J.P., Boothroyd, C., Loh, K.P., Tok, E.S., Foo, Y.-L.: Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano letters 6 (2006) [3] 449–452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Deng, X., Zhang, H. et al. Large-Scale Preparation of Carbon Nanotubes via Catalytic Pyrolysis of Phenolic Resin at Low Temperature. Interceram. - Int. Ceram. Rev. 64, 86–89 (2015). https://doi.org/10.1007/BF03401105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401105

Keywords

Navigation