Consideration of Alternate Raw Materials for Porcelain Tile Manufacture: The Effect of the Incorporation of Fired Scrap and Pyrophyllite

  • T. K. MukhopadhyayEmail author
  • S. Ghosh
  • M. Majumder
  • S. Ghatak
Building Materials


To address the problem of depleting reserves of raw materials for the manufacture of porcelain tiles a comparative analysis is made between two possible alternatives. The recycling of waste generated during tile manufacturing and the use of pyrophyllite in the composition were compared in relation to process parameters such as firing temperature and manifested properties such as linear shrinkage, porosity, bulk density and the sequence of sintering in a dilatometric study. It was found that the use of pyrophyllite in such systems is a better proposition. The conclusion was supported by microstructural and XRD phase analysis. The better ceramic properties in the pyrophyllite containing system are attributed to higher mullite formation at comparative firing temperature and a possible explanation for the same has been put forward. The use of pyrophyllite will open up an opportunity to utilize this non-conventional material in the commercial production of different porcelain products.


pyrophyllite waste scrap sintering porcelain microstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Taskiran, M.U., Demirkol, N., Capoglu, A.: A new porcelainised stoneware material based on anorthite. J. Eur. Ceram. Soc. 25 (2005) 293–300CrossRefGoogle Scholar
  2. [2]
    Kumar, S., Singh, K.K., Ramchandrarao, P.: Effects of fly ash additions on the mechanical and other properties of porcelainised stoneware tiles. J. Mater. Sci. 36 (2001) 5917–5922CrossRefGoogle Scholar
  3. [3]
    Dondi, M., Ercolani, G., Melandri, C., Mingazzini, C., Marsigli, M.: The chemical composition of porcelain stoneware tiles and its influence on microstructural and mechanical properties. Interceram 48 (1999) [2] 75–83Google Scholar
  4. [4]
    Mukhopadhyay, T.K., Das, M., Ghosh, S., Chakrabarti, S., Ghatak, S.: Microstructure and thermo-mechanical properties of a talc doped stoneware composition containing illitic clay. Ceram. Int. 29 (2003) [5] 587–597CrossRefGoogle Scholar
  5. [5]
    Mukhopadhyay, T.K., Ghosh, S., Ghosh, J., Ghatak, S., Maiti, H.S.: Effect of fly ash on the physico-chemical and mechanical properties of a porcelain composition. Ceram. Int. 36 (2010) [3] 1055–1062CrossRefGoogle Scholar
  6. [6]
    Barbieri, L., Corradi, A., Lancellotti, I., Manfredini, T.: Use of municipal incinerator bottom ash as sintering promoter in industrial ceramics. Waste Management 22 (2002) 859–863CrossRefGoogle Scholar
  7. [7]
    Dana, K., Das, S.K.: Partial substitution of feldspar by B. F. slag in triaxial porcelain: phase and microstructural evolution. J. Eur. Ceram. Soc. 24 (2004) 3833–3839CrossRefGoogle Scholar
  8. [8]
    Tucci, A., Esposito, L., Rastelli, E., Palmonari, C., Rambaldi, E.: Use of sodalime scrap-glass as a fluxing agent in a porcelain stoneware tile mix. J. Eur. Ceram. Soc. 24 (2004) [1] 83–92CrossRefGoogle Scholar
  9. [9]
    Matteucci, F., Dondi, M., Guarini, G.: Effect of soda-lime glass on sintering and technological properties of porcelain stoneware tiles. Ceram. Int. 28 (2002) [8] 873–880CrossRefGoogle Scholar
  10. [10]
    Gennaro, R., Cappelletti, P., Cerri, G., Gennaro, M., Dondi, M., Guarini, G., Langella, A., Naimo, D.: Influence of zeolites on sintering and technological properties of porcelain stoneware tiles. J. Eur. Ceram. Soc. 23 (2003) [1] 2237–2245CrossRefGoogle Scholar
  11. [11]
    Dondi, M., Biasini, V., Guarini, G., Raimondo, M., Argnani, A., Di Primio, S.: The influence of magnesium silicates on technological behaviour of porcelain stoneware tiles. Key. Eng. Mater. 206–213 (2001) [III] 1795–1798CrossRefGoogle Scholar
  12. [12]
    Prasad, C.S., Karmakar, D.P., Gupta, A.K., Mukhopadhyay, T.K., Chakraborti, S.: Development of fast fired body using wollastonite suitable for crockeryware. Trans. Ind. Ceram. Soc. 63 (2004) [1] 21–26CrossRefGoogle Scholar
  13. [13]
    Tucci, A., Rambaldi, E., Esposito, L.: Use of scrap glass as raw material for porcelain stoneware tiles. Adv. Appl. Ceram. 105 (2006) [1] 40–45CrossRefGoogle Scholar
  14. [14]
    Matteucci, F., Dondi, M., Guarini, G.: Effect of soda-lime glass on sintering and technological properties of porcelain stoneware tiles. Ceram. Int. 28 (2002) [8] 873–880CrossRefGoogle Scholar
  15. [15]
    Pagani, E., Milone, D., Campolo, M.P., Dal Maschio, R., Francescon, F.: Technological benefits from the use of powdered vitreous china scraps in sanitaryware production. Interceram 47 (1998) [2] 79–87Google Scholar
  16. [16]
    Torres, P., Fernandes, H.R., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.: Incorporation of granite cutting sludge in industrial porcelain tile formulations. J. Euro. Ceram. Soc. 24 (2004) 3177–3185CrossRefGoogle Scholar
  17. [17]
    Andreola, F., Barbieri, L., Corradi, A., Lancellotti, I., Manfredini, T.: Utilization of municipal incinerator grate slag for manufacturing of porcelainized stoneware tiles manufacturing. J. Eur. Ceram. Soc. 22 (2002) 1457–1462CrossRefGoogle Scholar
  18. [18]
    Karamanov, A., Karamanova, E., Ferrari, A. M., Ferrante, F., Pelino, M.: The effect of fired scrap addition on the sintering behaviour of hard porcelain. Ceram. Int. 32 (2006) 727–732CrossRefGoogle Scholar
  19. [19]
    Djambazov, S., Yoleva, A.: Investigation of sanitaryware porcelain scrap behavior in single fired wall tile body. Interceram 51 (2002) [6] 408–409Google Scholar
  20. [20]
    Mukhopadhyay, T.K., Ghosh, S., Ghatak, S.: Phase analysis and microstructure evolution of a bone china body modified with scrap addition. Ceram. Int. 37 (2011) 1615–1623CrossRefGoogle Scholar
  21. [21]
    Restrepo, J.J., Dinger, D.R.: Control of pyroplastic deformation in triaxial porcelain bodies using thermal dilatometry. Interceram 44 (1995) [6] 391–398Google Scholar
  22. [22]
    Courtney, T.H.: Mechanical behavior of materials. McGraw Hill Publishing Company, New York (1990) 336–340, ISBN-13: 9780070285941Google Scholar
  23. [23]
    Spirov, K., Stefavov, S., Mitkova, E.: Interceram 41 (1992) [1] 7–9Google Scholar
  24. [24]
    Bozadgiev, L., Georgiev, E.: Porcelain bodies based on bisquit and glost fired porcelain waste. Interceram 41 (1992) [7/8] 478–481Google Scholar
  25. [25]
    Mukhopadhyay, T.K., Ghosh, S., Ghatak, S, Maiti, H.S.: Effect of pyrophyllite on vitrification and on physical properties of triaxial porcelain. Ceram. Int. 32 (2006) 871–876CrossRefGoogle Scholar
  26. [26]
    Bhasin, S., Amritphale, S.S., Chandra, S.: Effect of pyrophyllite addition on sintering characteristics of fly ash based ceramic wall tiles. Br. Ceram. Trans. 102 (2003) [2] 83–86CrossRefGoogle Scholar
  27. [27]
    Ece, Ö.I., Nakagawa, Z.-E.: Bending strength of porcelains. Ceram. Int. 28 (2002) 131–140CrossRefGoogle Scholar
  28. [28]
    Braganca, S.R., Bergmann, C.P.: A view of whitewares mechanical strength and microstructure. Ceram. Int. 29 (2003) 801–806CrossRefGoogle Scholar
  29. [29]
    Warshaw, S.I., Seider, R.: Comparison of Strength of triaxial porcelains containing alumina and silica. J. Am. Ceram. Soc. 50 (1967) 337–343CrossRefGoogle Scholar
  30. [30]
    Mücke, U., Ullner, Ch., Nolze, G.: Microstructure, internal stresses and fracture mechanics properties of quartzose silicate materials for white wares. cfi/DKG 78 (2001) 731–36Google Scholar
  31. [31]
    Mackenzie, K.J.D., Brown, I.W.M., Meinhold, R.H., Bowden, M.E.: Thermal reactions of pyrophyllite studied by high-resolution solid-state 27Al and 29Si nuclear magnetic resonance spectroscopy. J. Am. Ceram. Soc. 68 (1985) [5] 266–272CrossRefGoogle Scholar
  32. [32]
    Wang, L., Zhang, M., Simon-Redfern, A.T., Zhang, Z.: Dehydroxylation and transformation of the 2:1 phyllosilicate pyrophyllite at elevated temperatures: An infrared spectroscopic study. Clays and Clay Minerals 50 (2002) [2] 272–283CrossRefGoogle Scholar
  33. [33]
    Iqbal, Y., Lee, W.E.: Fired porcelain microstructure revisited. J. Am. Ceram. Soc. 82 (1999) [12] 3584–3590CrossRefGoogle Scholar
  34. [34]
    Iqbal, Y., Lee, W.E.: Microstructural evolution in triaxial porcelain. J. Am. Ceram. Soc. 83 (2000) [12] 3121–3127CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • T. K. Mukhopadhyay
    • 1
    Email author
  • S. Ghosh
    • 1
  • M. Majumder
    • 1
  • S. Ghatak
    • 1
  1. 1.Advance Clay & Traditional Ceramics DivisionCentral Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations