Advertisement

Journal of Hydrodynamics

, Volume 18, Issue 1, pp 355–358 | Cite as

Stability and dynamics of surfactant-covered liquid ultrathin films with slippage

  • Guohui Hu
Session A6

Abstract

The influences of the Navier slip condition on the stability and dynamics of surfactant-covered ultrathin films are investigated by linear theory and numerical simulation based on lubrication approximation. The competition of the slippage, intermolecular potential and the Marangoni effect and their role on the flow are discussed in the present paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Barrat J. and Bocquet L. Large slip effect at a nonwetting fluid-solid interface. Phys. Review Lett. 1999, 82: 4671–4674.CrossRefGoogle Scholar
  2. [1a]
    Reiter G., Demirel A. L. and Granick S. From static to kinetic in confined liquid films[J]. Science, 1994, 263: 174.CrossRefGoogle Scholar
  3. [2]
    Priezjev N. J. and Troian S. M. Molecular origin and dynamic behavior of slip in sheared polymer films[J]. Phys. Review Lett. 2004, 92: 018302.CrossRefGoogle Scholar
  4. [3]
    Sharma A. Instability and dynamics of thin slipping films[J]. Applied Phys. Lett. 2003, 83: 3549.CrossRefGoogle Scholar
  5. [4]
    Sharma A. and Khanna R. Nonlinear stability of micro-scopic polymer films with slippage[J]. Macromolecules, 1996, 29: 6959.CrossRefGoogle Scholar
  6. [5]
    Kargupta K., Sharma A. and Khanna R. Instability, dynamics, and morphology of the thin slipping films[J]. Langmuir, 2004, 20: 244.CrossRefGoogle Scholar
  7. [6]
    Afsar-Siddiqui A. B., Luckham P. F. and Matar O. K. The spreading of surfactant solutions on thin liquid films[J]. Advances in Colloid and Interface Science, 2003, 106: 183.CrossRefGoogle Scholar
  8. [7]
    Stone H. A. A simple derivation of the time-dependent convective-diffusion equation for sirfactant transport along a deforming interface[J]. Physics of Fluids, 1990, A2: 111.CrossRefGoogle Scholar
  9. [8]
    Souza E. R. and Gallez D. Pattern formation in thin liquid films with insoluble surfactants[J]. Physics of Fluids, 1998, 10: 1804.CrossRefGoogle Scholar
  10. [9]
    Jensen O. E. and Grotberg J. B. Insoluble surfactant spreading on a thin viscous film — shock evolution and film rupture[J]. J. Fluid Mech. 1992, 240: 259.MathSciNetCrossRefGoogle Scholar
  11. [10]
    Warner M. R. E. and Craster R. V. Dewetting of ultrathin surfactant-covered films[J]. Physics of Fluids, 2002, 14: 4040–4054.CrossRefGoogle Scholar
  12. [11]
    Sharma A. Relationship of thin film stability and morphology to macroscopic parameters of wetting in the apolar and polar systems[J]. Langmuir, 1993, 9: 861.CrossRefGoogle Scholar
  13. [12]
    Zhang Y. L., Craster R. V. and Matar O. K. Surfactant driven flows overlying a hydrophobic epithelium: film rupture in the presence of slip[J]. J. Colloid and Interface Science, 2003, 264: 160.CrossRefGoogle Scholar
  14. [13]
    Hu G. H. Linear stability of ultrathin slipping films with insoluble surfactant[J]. Physics of Fluids, 2005, 17: 088105.CrossRefGoogle Scholar

Copyright information

© China Ship Scientific Research Center 2006

Authors and Affiliations

  • Guohui Hu
    • 1
  1. 1.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina

Personalised recommendations